2000
A Mutant Escherichia coli Tyrosyl-tRNA Synthetase Utilizes the Unnatural Amino Acid Azatyrosine More Efficiently than Tyrosine*
Hamano-Takaku F, Iwama T, Saito-Yano S, Takaku K, Monden Y, Kitabatake M, Söll D, Nishimura S. A Mutant Escherichia coli Tyrosyl-tRNA Synthetase Utilizes the Unnatural Amino Acid Azatyrosine More Efficiently than Tyrosine*. Journal Of Biological Chemistry 2000, 275: 40324-40328. PMID: 11006270, DOI: 10.1074/jbc.m003696200.Peer-Reviewed Original ResearchConceptsUnnatural amino acidsTyrosyl-tRNA synthetaseEscherichia coli tyrosyl-tRNA synthetasePosition 130Amino acidsVivo protein biosynthesisE. coli cellsAminoacyl-tRNA formationSingle point mutationTyrRS mutantsCellular proteinsProtein biosynthesisTYR geneMutant enzymesPlasmid libraryReplacement of phenylalanineColi cellsImmense potentialNormal phenotypeEfficient productionPoint mutationsTyrRSProteinPolymerase chain reaction techniqueSynthetase
1989
delta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA.
O'Neill G, Chen M, Söll D. delta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiology Letters 1989, 51: 255-9. PMID: 2511063, DOI: 10.1016/0378-1097(89)90406-0.Peer-Reviewed Original ResearchConceptsDelta-aminolevulinic acid biosynthesisChloroplasts of algaeTRNA-dependent transformationB. subtilisE. coliBacillus subtilisHigher plant speciesEscherichia coliPlant speciesAnaerobic eubacteriaGlutamyl-tRNAAcid biosynthesisCell-free extractsCell extractsBiosynthetic activitySubtilisDelta-aminolevulinic acidColiGabaculinAnaerobic conditionsAlaEubacteriaArchaebacteriaChloroplastsCyanobacteria
1977
Suppression of a defective alanyl-tRNA synthetase in Escherichia coli: A compensatory mutation to high alanine affinity
Theall G, Low K, Söll D. Suppression of a defective alanyl-tRNA synthetase in Escherichia coli: A compensatory mutation to high alanine affinity. Molecular Genetics And Genomics 1977, 156: 221-227. PMID: 340903, DOI: 10.1007/bf00283495.Peer-Reviewed Original ResearchConceptsTemperature-resistant revertantsAlanyl-tRNA synthetaseResistant revertantsE. coli mapWild-type enzymeRibosomal proteinsStructural geneGene mapsSynthetase mutantsMutant enzymesParental enzymeCompensatory mutationsTemperature-sensitive characterEscherichia coliAdditional mutationsEnzymeRevertantsSynthetaseMutationsKm valuesAlanineRecAMutantsGenesAffinity
1968
Biosynthesis of the Peptidoglycan of Bacterial Cell Walls VI. Incorporation Of l-Threonine Into Interpeptide Bridges in Micrococcus Roseus
Roberts W, Strominger J, Söll D. Biosynthesis of the Peptidoglycan of Bacterial Cell Walls VI. Incorporation Of l-Threonine Into Interpeptide Bridges in Micrococcus Roseus. Journal Of Biological Chemistry 1968, 243: 749-756. PMID: 5638591, DOI: 10.1016/s0021-9258(19)81729-5.Peer-Reviewed Original Research
1966
Specificity of sRNA for recognition of codons as studied by the ribosomal binding technique
Söll D, Jones D, Ohtsuka E, Faulkner R, Lohrmann R, Hayatsu H, Khorana H, Cherayil J, Hampel A, Bock R. Specificity of sRNA for recognition of codons as studied by the ribosomal binding technique. Journal Of Molecular Biology 1966, 19: 556-573. PMID: 5338858, DOI: 10.1016/s0022-2836(66)80023-2.Peer-Reviewed Original ResearchsRNA specificity for codon recognition as studied by the ribosomal binding technique.
Söll D, Cherayil J, Jones D, Faulkner R, Hapel A, Bock R, Khorana H. sRNA specificity for codon recognition as studied by the ribosomal binding technique. Cold Spring Harbor Symposia On Quantitative Biology 1966, 31: 51-61. PMID: 4866399, DOI: 10.1101/sqb.1966.031.01.011.Peer-Reviewed Original Research