2002
A one‐step method for in vitro production of tRNA transcripts
Korencić D, Söll D, Ambrogelly A. A one‐step method for in vitro production of tRNA transcripts. Nucleic Acids Research 2002, 30: e105-e105. PMID: 12384607, PMCID: PMC137149, DOI: 10.1093/nar/gnf104.Peer-Reviewed Original ResearchMeSH KeywordsDNADNA-Directed RNA PolymerasesDNA, Single-StrandedGenetic TechniquesRNA, TransferTemplates, GeneticTranscription, GeneticViral ProteinsConceptsTRNA transcriptsT7 RNA polymeraseLarge-scale plasmid preparationTRNA genesMicrobial genomesTRNA functionsDNA promoterRNA polymeraseRNA moleculesT7 promoterBiochemical characterizationTranscription templateDNA templateNew enzymeTranscriptsLarge oligonucleotidesTranscriptionGood substratePromoterShort oligonucleotidesEnzymatic digestionRapid productionPlasmid preparationsGenomeOligonucleotide
1991
Mono Q chromatography permits recycling of DNA template and purification of RNA transcripts after T7 RNA polymerase reaction
Jahn M, Jahn D, Kumar A, Söll D. Mono Q chromatography permits recycling of DNA template and purification of RNA transcripts after T7 RNA polymerase reaction. Nucleic Acids Research 1991, 19: 2786-2786. PMID: 1710347, PMCID: PMC328209, DOI: 10.1093/nar/19.10.2786.Peer-Reviewed Original Research
1989
A selection for mutants of the RNA polymerase III transcription apparatus: PCF1 stimulates transcription of tRNA and 5S RNA genes.
Willis I, Schmidt P, Söll D. A selection for mutants of the RNA polymerase III transcription apparatus: PCF1 stimulates transcription of tRNA and 5S RNA genes. The EMBO Journal 1989, 8: 4281-4288. PMID: 2686985, PMCID: PMC401634, DOI: 10.1002/j.1460-2075.1989.tb08614.x.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceCloning, MolecularDNA-Directed RNA PolymerasesGene ExpressionGenes, DominantGenes, FungalKineticsMolecular Sequence DataMutationOligonucleotide ProbesPlasmidsPromoter Regions, GeneticRNA Polymerase IIIRNA, RibosomalRNA, Ribosomal, 5SRNA, TransferSaccharomyces cerevisiaeSaccharomycetalesSchizosaccharomycesSelection, GeneticSuppression, GeneticTemplates, GeneticTranscription, GeneticConceptsTRNA genesMutant strainTranscription of mutantsTranscription of tRNARNA polymerase IIISuppressor tRNA geneDominant mutant geneWild-type strainStable complexesTranscription apparatusRNA genesStable complex formationUpstream geneTRNA suppressorsPositive regulatorSteady-state levelsComplex assemblyGenetic approachesPolymerase IIIGene transcriptionInternal promoterMutant geneTime-course experimentsTranscriptionGenes
1987
Simplified in vitro synthesis of mutated RNA molecules
Krupp G, Söll D. Simplified in vitro synthesis of mutated RNA molecules. FEBS Letters 1987, 212: 271-275. PMID: 3545903, DOI: 10.1016/0014-5793(87)81359-5.Peer-Reviewed Original Research
1985
Mutations preventing expression of sup3 tRNASer nonsense suppressors of Schizosaccharomyces pombe.
Pearson D, Willis I, Hottinger H, Bell J, Kumar A, Leupold U, Söll D. Mutations preventing expression of sup3 tRNASer nonsense suppressors of Schizosaccharomyces pombe. Molecular And Cellular Biology 1985, 5: 808-815. PMID: 3921825, PMCID: PMC366785, DOI: 10.1128/mcb.5.4.808.Peer-Reviewed Original ResearchConceptsTRNA genesSchizosaccharomyces pombeGenomic clone bankEucaryotic tRNA genesTranscription control regionsIdentification of mutationsClone bankTRNA precursorsControl regionNonsense codonGenetic evidenceNonsense suppressorsRevertant allelesTranscriptional efficiencySaccharomyces cerevisiae extractSequence analysisSuppressor locusColony hybridizationMutational hotspotsPoint mutationsCerevisiae extractGenesPombeMutationsSplicingFunctional analysis of fractionated Drosophila Kc cell tRNA gene transcription components.
Burke D, Söll D. Functional analysis of fractionated Drosophila Kc cell tRNA gene transcription components. Journal Of Biological Chemistry 1985, 260: 816-823. PMID: 3844013, DOI: 10.1016/s0021-9258(20)71171-3.Peer-Reviewed Original ResearchConceptsTranscription componentsTRNA genesDrosophila Kc cell extractFunctional analysisActive transcription complexesHuman HeLa cellsFactor BDrosophila systemTranscription initiationStable complex formationTranscription complexC associatesLarge complexesReconstitution experimentsCell extractsHeLa cellsCell factorFactor C.Factor CGenesStable complexesComplex formationPartial purificationComplexesDNAProcessing of precursor tRNAs in Drosophila. Processing of the 3‘ end involves an endonucleolytic cleavage and occurs after 5‘ end maturation.
Frendewey D, Dingermann T, Cooley L, Söll D. Processing of precursor tRNAs in Drosophila. Processing of the 3‘ end involves an endonucleolytic cleavage and occurs after 5‘ end maturation. Journal Of Biological Chemistry 1985, 260: 449-454. PMID: 3843841, DOI: 10.1016/s0021-9258(18)89752-6.Peer-Reviewed Original Research
1983
Each element of the Drosophila tRNA Arg gene split promoter directs transcription in Xenopus oocytes
Sharp S, Dingermann T, Schaack J, Sharp J, Burke D, DeRobertis E, Söll D. Each element of the Drosophila tRNA Arg gene split promoter directs transcription in Xenopus oocytes. Nucleic Acids Research 1983, 11: 8677-8690. PMID: 6561520, PMCID: PMC326616, DOI: 10.1093/nar/11.24.8677.Peer-Reviewed Original ResearchConceptsD-control regionDrosophila tRNAArg geneTRNAArg geneEukaryotic tRNA gene transcriptionXenopus oocytesRNA polymerase III transcription factorT-control regionEukaryotic tRNA genesTRNA gene transcriptionIntragenic control regionTranscription initiation siteSpecific DNA sequencesTRNA genesTranscription initiationArg genesControl regionTranscription factorsGene transcriptionDNA sequencesMutant formsOocyte nucleusSequence 5Initiation siteGenesTranscriptionStable transcription complex formation of eukaryotic tRNA genes is dependent on a limited separation of the two intragenic control regions.
Dingermann T, Sharp S, Schaack J, Söll D. Stable transcription complex formation of eukaryotic tRNA genes is dependent on a limited separation of the two intragenic control regions. Journal Of Biological Chemistry 1983, 258: 10395-10402. PMID: 6309803, DOI: 10.1016/s0021-9258(17)44470-x.Peer-Reviewed Original ResearchConceptsIntragenic control regionControl regionTRNA genesTRNAArg geneDrosophila Kc cell extractStable transcription complex formationTranscription efficiencyDrosophila tRNAArg geneT-control regionMutant tRNA genesEukaryotic tRNA genesTranscription complex formationStable transcription complexesWild-type geneXhoI linkerTranscriptional roleTranscription initiationTranscription complexDNA regionsType genesTranscription factorsGene transcriptionTermination sitesDNA fragmentsCell extracts
1980
Two control regions for eukaryotic tRNA gene transcription.
DeFranco D, Schmidt O, Söll D. Two control regions for eukaryotic tRNA gene transcription. Proceedings Of The National Academy Of Sciences Of The United States Of America 1980, 77: 3365-3368. PMID: 6774336, PMCID: PMC349616, DOI: 10.1073/pnas.77.6.3365.Peer-Reviewed Original ResearchConceptsControl regionTRNALys geneGene transcriptionEukaryotic tRNA gene transcriptionTRNA gene transcriptionInternal control regionIdentical coding sequenceShort leader sequencePrecursor tRNAsTranscription initiationMature tRNALeader sequenceCoding sequencePBR322 sequencesNuclear extractsRecombinant plasmidTranscriptionXenopus oocytesGenesTRNASequence
1971
Purification of Five Leucine Transfer Ribonucleic Acid Species from Escherichia coli and Their Acylation by Heterologous Leucyl-Transfer Ribonucleic Acid Synthetase
Blank H, Söll D. Purification of Five Leucine Transfer Ribonucleic Acid Species from Escherichia coli and Their Acylation by Heterologous Leucyl-Transfer Ribonucleic Acid Synthetase. Journal Of Biological Chemistry 1971, 246: 4947-4950. PMID: 4936719, DOI: 10.1016/s0021-9258(18)61954-4.Peer-Reviewed Original ResearchMeSH KeywordsAcylationBase SequenceBenzoatesCarbon IsotopesCarcinomaCell LineChromatography, DEAE-CelluloseChromatography, GelDrug StabilityEscherichia coliGenetic CodeHot TemperatureKineticsLeucineLigasesMouth NeoplasmsNucleic Acid DenaturationPolynucleotidesRibosomesRNA, BacterialRNA, TransferTemplates, GeneticYeastsPurification of an Escherichia coli Leucine Suppressor Transfer Ribonucleic Acid and Its Aminoacylation by the Homologous Leucyl-Transfer Ribonucleic Acid Synthetase
Hayashi H, Söll D. Purification of an Escherichia coli Leucine Suppressor Transfer Ribonucleic Acid and Its Aminoacylation by the Homologous Leucyl-Transfer Ribonucleic Acid Synthetase. Journal Of Biological Chemistry 1971, 246: 4951-4954. PMID: 4941862, DOI: 10.1016/s0021-9258(18)61955-6.Peer-Reviewed Original ResearchMeSH KeywordsAcylationBenzoatesBiological AssayCarbon IsotopesChromatography, DEAE-CelluloseColiphagesEscherichia coliGenetics, MicrobialKineticsLeucineLigasesMutationPeptide BiosynthesisPlant Growth RegulatorsPlants, ToxicPolynucleotidesRNA, TransferSuppression, GeneticTemplates, GeneticTobaccoValine
1970
Purification of Five Serine Transfer Ribonucleic Acid Species from Escherichia coli and Their Acylation by Homologous and Heterologous Seryl Transfer Ribonucleic Acid Synthetases
Roy K, Söll D. Purification of Five Serine Transfer Ribonucleic Acid Species from Escherichia coli and Their Acylation by Homologous and Heterologous Seryl Transfer Ribonucleic Acid Synthetases. Journal Of Biological Chemistry 1970, 245: 1394-1400. PMID: 4910052, DOI: 10.1016/s0021-9258(18)63249-1.Peer-Reviewed Original Research
1968
On the recognition of serine transfer RNA's specific for unrelated codons by the same seryl-transfer RNA synthetase.
Sundharadas G, Katze J, Söll D, Konigsberg W, Lengyel P. On the recognition of serine transfer RNA's specific for unrelated codons by the same seryl-transfer RNA synthetase. Proceedings Of The National Academy Of Sciences Of The United States Of America 1968, 61: 693-700. PMID: 4879401, PMCID: PMC225215, DOI: 10.1073/pnas.61.2.693.Peer-Reviewed Original Research