2023
Recoding UAG to selenocysteine in Saccharomyces cerevisiae
Hoffman K, Chung C, Mukai T, Krahn N, Jiang H, Balasuriya N, O'Donoghue P, Söll D. Recoding UAG to selenocysteine in Saccharomyces cerevisiae. RNA 2023, 29: 1400-1410. PMID: 37279998, PMCID: PMC10573291, DOI: 10.1261/rna.079658.123.Peer-Reviewed Original ResearchMeSH KeywordsAeromonas salmonicidaCodon, TerminatorHumansNucleic Acid ConformationProtein EngineeringRNA, Transfer, CysSaccharomyces cerevisiaeConceptsSelenoprotein productionYeast expression systemSeryl-tRNA synthetaseSite-specific incorporationEukaryotic relativesKingdom FungiSelenocysteine synthaseSelenophosphate synthetaseBiosynthesis pathwayEukaryotic selenoproteinsMetabolic engineeringBiosynthetic pathwayPathway componentsExpression systemReductase enzymeTRNASaccharomycesYeastTranslation componentsSpecific sitesFacile productionUnique chemicalSynthetasePathwayFirst demonstration
2012
The Mechanism of Pre-transfer Editing in Yeast Mitochondrial Threonyl-tRNA Synthetase*
Ling J, Peterson KM, Simonović I, Söll D, Simonović M. The Mechanism of Pre-transfer Editing in Yeast Mitochondrial Threonyl-tRNA Synthetase*. Journal Of Biological Chemistry 2012, 287: 28518-28525. PMID: 22773845, PMCID: PMC3436575, DOI: 10.1074/jbc.m112.372920.Peer-Reviewed Original ResearchConceptsPre-transfer editingThreonyl-tRNA synthetaseHydrolytic water moleculeFundamental biological processesNormal cellular functionAminoacyl-tRNA synthetasesPost-transfer editingPost-transfer editing activityTranslational fidelityAminoacylation siteCellular functionsAminoacylation active siteBiological processesMST1Conformational changesEditing activitySeryl adenylateAmino acidsSpecialized domainsEditingSerineSites 100SynthetaseActive siteAdenylateYeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment
Ling J, Peterson KM, Simonović I, Cho C, Söll D, Simonović M. Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 3281-3286. PMID: 22343532, PMCID: PMC3295322, DOI: 10.1073/pnas.1200109109.Peer-Reviewed Original ResearchMeSH KeywordsAeropyrumAmino Acid SequenceAnticodonCatalytic DomainCodonCrystallography, X-RayEscherichia coliEvolution, MolecularLeucineMitochondriaModels, MolecularMolecular Sequence DataProtein ConformationProtein Structure, TertiaryRNA EditingRNA, Transfer, Amino AcylSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence AlignmentSpecies SpecificityStaphylococcus aureusSubstrate SpecificityThreonineThreonine-tRNA LigaseConceptsThreonyl-tRNA synthetaseAnticodon loopAnticodon sequenceEscherichia coli ThrRSSet of tRNAsDistinct recognition mechanismsAnticodon-binding domainAminoacyl-tRNA synthetasesCUN codonsDetailed structural comparisonCodon reassignmentYeast mitochondriaGenetic codeTRNA isoacceptorsSaccharomyces cerevisiaeIsoacceptor tRNAsEditing domainTRNAMST1Anticodon tripletStructural comparisonNatural tRNAAmino acidsDistinct mechanismsRecognition mechanism
2011
An unusual tRNAThr derived from tRNAHis reassigns in yeast mitochondria the CUN codons to threonine
Su D, Lieberman A, Lang BF, Simonović M, Söll D, Ling J. An unusual tRNAThr derived from tRNAHis reassigns in yeast mitochondria the CUN codons to threonine. Nucleic Acids Research 2011, 39: 4866-4874. PMID: 21321019, PMCID: PMC3113583, DOI: 10.1093/nar/gkr073.Peer-Reviewed Original ResearchConceptsCUN codonsYeast mitochondriaGenetic codeAlloacceptor tRNA gene recruitmentComprehensive phylogenetic analysisStandard genetic codeThreonyl-tRNA synthetaseHistidyl-tRNA synthetaseGene recruitmentEvolutionary originPhylogenetic analysisRecoding eventBiochemical experimentsFirst nucleotideAnticodon loopMST1CodonFirst clear exampleYeastMitochondriaThreonineSynthetaseCandida albicansGenomeClear example
2002
tRNA‐dependent amino acid discrimination by yeast seryl‐tRNA synthetase
Gruic‐Sovulj I, Landeka I, Söll D, Weygand‐Durasevic I. tRNA‐dependent amino acid discrimination by yeast seryl‐tRNA synthetase. The FEBS Journal 2002, 269: 5271-5279. PMID: 12392560, DOI: 10.1046/j.1432-1033.2002.03241.x.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast seryl-tRNA synthetaseCognate tRNA moleculesAmino acid discriminationAminoacyl-tRNA synthetasesAmino acid substratesSimilar amino acidsAmino acid serineGenetic codeEnzyme active siteTRNA moleculesActive siteYeast SerRSConformational changesAcid substratesAmino acidsSerineSynthetaseStoichiometric analysisDifferent affinitiesEnzymeAccurate translationTRNASerSynthetasesSaccharomyces
2001
Protein phosphatase 2A: identification in Oryza sativa of the gene encoding the regulatory A subunit
Yu S, Lei H, Chang W, Söll D, Hong G. Protein phosphatase 2A: identification in Oryza sativa of the gene encoding the regulatory A subunit. Plant Molecular Biology 2001, 45: 107-112. PMID: 11247601, DOI: 10.1023/a:1006472722500.Peer-Reviewed Original ResearchConceptsProtein phosphatase 2AAmino acid identitySouthern blot analysisRice genomePP2A proteinPhosphatase 2ABAC libraryRegulatory subunitOryza sativaNicotiana tabacumAcid identityCDNA libraryBp cDNASingle copyGenomic DNAGenesBlot analysisRice proteinRepeat unitsSubunitsProteinArabidopsisIntronsGenomeRPA1
2000
A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia
Bunjun S, Stathopoulos C, Graham D, Min B, Kitabatake M, Wang A, Wang C, Vivarès C, Weiss L, Söll D. A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 12997-13002. PMID: 11078517, PMCID: PMC27167, DOI: 10.1073/pnas.230444397.Peer-Reviewed Original ResearchConceptsCys-tRNAAminoacyl-tRNA synthetaseProlyl-tRNA synthetasePrimitive eukaryote Giardia lambliaPro geneEukaryote Giardia lambliaNumber of archaeaAlanyl-tRNA synthetasesCysteinyl-tRNA synthetaseE. coli tRNACysS genesM. jannaschiiMethanococcus jannaschiiMost organismsGenomic sequencesSaccharomyces cerevisiaeCysteinyl-tRNAGene productsPro-tRNATRNA synthetaseDual specificityMethanobacterium thermoautotrophicumProtein synthesisEscherichia coliAmino acids
1998
C‐terminal truncation of yeast SerRS is toxic for Saccharomyces cerevisiae due to altered mechanism of substrate recognition
Lenhard B, Prætorius-Ibba M, Filipic S, Söll D, Weygand-Durasevic I. C‐terminal truncation of yeast SerRS is toxic for Saccharomyces cerevisiae due to altered mechanism of substrate recognition. FEBS Letters 1998, 439: 235-240. PMID: 9845329, DOI: 10.1016/s0014-5793(98)01376-3.Peer-Reviewed Original Research
1997
A nuclear genetic lesion affecting Saccharomyces cerevisiae mitochondrial translation is complemented by a homologous Bacillus gene
Kim S, Stange-Thomann N, Martins O, Hong K, Söll D, Fox T. A nuclear genetic lesion affecting Saccharomyces cerevisiae mitochondrial translation is complemented by a homologous Bacillus gene. Journal Of Bacteriology 1997, 179: 5625-5627. PMID: 9287027, PMCID: PMC179443, DOI: 10.1128/jb.179.17.5625-5627.1997.Peer-Reviewed Original ResearchMeSH KeywordsBacillus subtilisDNA, FungalDNA, MitochondrialFungal ProteinsGenes, BacterialMitochondrial ProteinsMolecular Sequence DataProtein BiosynthesisRecombinant Fusion ProteinsSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence Analysis, DNASequence Homology, Amino AcidTransaminasesTranscription FactorsDefining the Active Site of Yeast Seryl-tRNA Synthetase MUTATIONS IN MOTIF 2 LOOP RESIDUES AFFECT tRNA-DEPENDENT AMINO ACID RECOGNITION*
Lenhard B, Filipić S, Landeka I, Škrtić I, Söll D, Weygand-Durašević I. Defining the Active Site of Yeast Seryl-tRNA Synthetase MUTATIONS IN MOTIF 2 LOOP RESIDUES AFFECT tRNA-DEPENDENT AMINO ACID RECOGNITION*. Journal Of Biological Chemistry 1997, 272: 1136-1141. PMID: 8995413, DOI: 10.1074/jbc.272.2.1136.Peer-Reviewed Original ResearchConceptsMotif 2 loopAmino acid recognitionSeryl-tRNA synthetaseClass II aminoacyl-tRNA synthetasesSeryl-tRNA synthetasesYeast seryl-tRNA synthetaseAmino acidsLoss of complementationAminoacyl-tRNA synthetasesActive sitePresence of tRNASteady-state kinetic analysisProkaryotic counterpartsYeast enzymeElevated Km valuesNull allelesConformational changesTRNAAcceptor endSynthetasesGenesATPStructural dataStructural studiesSerine
1996
A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis.
Garbers C, DeLong A, Deruére J, Bernasconi P, Söll D. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis. The EMBO Journal 1996, 15: 2115-2124. PMID: 8641277, PMCID: PMC450134, DOI: 10.1002/j.1460-2075.1996.tb00565.x.Peer-Reviewed Original ResearchConceptsProtein phosphatase 2AAuxin transportNaphthylphthalamic acidPhosphatase 2AProtein phosphatase 2A regulatory subunitT-DNA insertionRoot hair developmentT-DNA insertsTemperature-sensitive phenotypeRcn1 mutationROOTS CURLPhytohormone auxinArabidopsis thalianaMutant phenotypeAuxin effluxRCN1 geneRegulatory subunitHypocotyl elongationRoot branchingCell elongationShoot apexMolecular mechanismsHair developmentArabidopsisGrowth curvatureThe C-terminal Extension of Yeast Seryl-tRNA Synthetase Affects Stability of the Enzyme and Its Substrate Affinity (*)
Weygand-Durasevic I, Lenhard B, Filipic S, Söll D. The C-terminal Extension of Yeast Seryl-tRNA Synthetase Affects Stability of the Enzyme and Its Substrate Affinity (*). Journal Of Biological Chemistry 1996, 271: 2455-2461. PMID: 8576207, DOI: 10.1074/jbc.271.5.2455.Peer-Reviewed Original Research
1994
Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases.
Frugier M, Söll D, Giegé R, Florentz C. Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases. Biochemistry 1994, 33: 9912-21. PMID: 8060999, DOI: 10.1021/bi00199a013.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthetasesIdentity nucleotidesHigh-resolution X-ray structuresAminoacyl-tRNA synthetase complexGlutaminyl-tRNA synthetaseAspartyl-tRNA synthetasesAspartyl-tRNA synthetaseGlutamine identityCognate tRNATRNA structureTRNA moleculesTRNAAminoacylation specificitySynthetase complexSpecific aminoacylationConformational changesSynthetasesEscherichia coliYeastSynthetaseNucleotidesE. coliX-ray structureComplex formationColi
1993
Yeast seryl‐tRNA synthetase expressed in Escherichia coli recognizes bacterial serine‐specific tRNAs in vivo
WEYGAND‐DURAŠEVIĆ I, Nenad B, Dieter J, Dieter S. Yeast seryl‐tRNA synthetase expressed in Escherichia coli recognizes bacterial serine‐specific tRNAs in vivo. The FEBS Journal 1993, 214: 869-877. PMID: 7686490, DOI: 10.1111/j.1432-1033.1993.tb17990.x.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast SerRSYeast seryl-tRNA synthetaseEscherichia coliE. coli tRNAVivo complementationProkaryotic hostsTwo-step purificationSer geneHomologous tRNAsNonpermissive temperatureSer mutantE. coli strainsTRNAE. coliColi strainsColiSynthetaseSerRSVivoComplementationMutantsSaccharomycesGenesPromoterSPL1-1, a Saccharomyces cerevisiae mutation affecting tRNA splicing
Kolman C, Söll D. SPL1-1, a Saccharomyces cerevisiae mutation affecting tRNA splicing. Journal Of Bacteriology 1993, 175: 1433-1442. PMID: 8444805, PMCID: PMC193230, DOI: 10.1128/jb.175.5.1433-1442.1993.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceBlotting, NorthernIntronsMolecular Sequence DataMutationNucleic Acid ConformationRNA Processing, Post-TranscriptionalRNA SplicingRNA, FungalRNA, TransferSaccharomyces cerevisiaeSequence Homology, Amino AcidSequence Homology, Nucleic AcidTranscription, GeneticConceptsTRNA genesSaccharomyces cerevisiae genesMature suppressor tRNASuppressor tRNA geneOpen reading frameSaccharomyces cerevisiae mutationsCerevisiae genesTRNA splicingSuppression phenotypeTRNA processingChromosome IIIGenetic approachesSuppressor tRNAReading frameGenetic analysisNorthern analysisMutant selectionMutantsNonsense mutationGenesMutationsLEU2Cell levelIncreased synthesisNFS1
1992
Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression.
Verkamp E, Jahn M, Jahn D, Kumar A, Söll D. Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression. Journal Of Biological Chemistry 1992, 267: 8275-8280. PMID: 1569081, DOI: 10.1016/s0021-9258(18)42438-6.Peer-Reviewed Original ResearchMeSH KeywordsAldehyde OxidoreductasesAmino Acid SequenceBase SequenceChromatography, GelCyanobacteriaEscherichia coliGene ExpressionGenes, BacterialGenes, FungalGenetic Complementation TestMolecular Sequence DataOpen Reading FramesPlasmidsRestriction MappingSaccharomyces cerevisiaeSequence Homology, Nucleic AcidConceptsGlutamyl-tRNA reductaseHemA geneAmino acid sequenceHemA proteinGluTR activitySynechocystis 6803Acid sequenceE. coliGlutamate-1-semialdehyde aminotransferaseHemA gene productEscherichia coliCyanobacterium Synechocystis spOpen reading frameEnterobacterium Escherichia coliDNA sequence analysisFunctional complementationGene structureGlu-tRNAGel filtration experimentsPCC 6803Synechocystis spGlutamyl-tRNAAcid polypeptideReading frameALA formation
1991
Histidine tRNA guanylyltransferase from Saccharomyces cerevisiae. I. Purification and physical properties.
Pande S, Jahn D, Söll D. Histidine tRNA guanylyltransferase from Saccharomyces cerevisiae. I. Purification and physical properties. Journal Of Biological Chemistry 1991, 266: 22826-22831. PMID: 1660461, DOI: 10.1016/s0021-9258(18)54428-8.Peer-Reviewed Original ResearchConceptsAdditional nucleotidesHistidine tRNA genesPolymin P precipitationTRNA genesSodium dodecyl sulfate-polyacrylamide gel electrophoresisDodecyl sulfate-polyacrylamide gel electrophoresisTRNA speciesSulfate-polyacrylamide gel electrophoresisRate zonal sedimentationHomodimeric structureGuanylyltransferaseRelative molecular weightTRNAATP-agaroseGel filtrationAbolishes activityHistidine tRNANative enzymeGuanosine residuesAcceptor RNAEnzymatic activityUnfractionated tRNAGuanosine substrateZonal sedimentationGel electrophoresis
1990
Yeast suppressor mutations and transfer RNA processing
Nichols M, Willis I, Söll D. Yeast suppressor mutations and transfer RNA processing. Methods In Enzymology 1990, 181: 377-394. PMID: 2199758, DOI: 10.1016/0076-6879(90)81137-j.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBlotting, NorthernChromosomes, FungalGenes, FungalIndicators and ReagentsMolecular Sequence DataMutationNucleic Acid ConformationNucleic Acid HybridizationRNA Polymerase IIIRNA Processing, Post-TranscriptionalRNA, TransferRNA, Transfer, SerSaccharomyces cerevisiaeSuppression, GeneticTranscription FactorsTranscription, GeneticConceptsTRNA genesMature-sized tRNAsRNA processing reactionsPrimer-directed mutagenesisAminoacyl-tRNA synthetaseTransfer RNA moleculesCognate aminoacyl-tRNA synthetaseRNA processingSuppressor mutationsTRNA locusElongation factorProtein biosynthesisRibosomal interactionsRNA moleculesMutant strainStructural proteinsPink coloniesTranscription efficiencyProcessing reactionsProtein synthesisSuppressor functionTRNALow template concentrationsGenesLociEnzymatic addition of guanylate to histidine transfer RNA
Williams J, Cooley L, Söll D. Enzymatic addition of guanylate to histidine transfer RNA. Methods In Enzymology 1990, 181: 451-462. PMID: 2166216, DOI: 10.1016/0076-6879(90)81143-i.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineChromatography, AffinityChromatography, DEAE-CelluloseChromatography, Ion ExchangeDrosophilaElectrophoresis, Polyacrylamide GelGuanosine TriphosphateKineticsNucleotidyltransferasesPhosphorus RadioisotopesRadioisotope Dilution TechniqueRNA, Transfer, Amino Acid-SpecificRNA, Transfer, HisSaccharomyces cerevisiaeSubstrate SpecificityConceptsHistidine tRNATransfer RNABacteriophage T5Yeast enzymeEnzyme migratesUridine residuesExtra nucleotidesLigase mechanismAdditional nucleotidesEnzymatic additionGel filtration chromatographyEnzyme intermediateTRNAAbsolute requirementEnzymeMolecular weightNucleotidesUltrogel AcA 34Filtration chromatographyATPDrosophilaAcA 34Molecular weight markersYeastTitration experiments
1989
A selection for mutants of the RNA polymerase III transcription apparatus: PCF1 stimulates transcription of tRNA and 5S RNA genes.
Willis I, Schmidt P, Söll D. A selection for mutants of the RNA polymerase III transcription apparatus: PCF1 stimulates transcription of tRNA and 5S RNA genes. The EMBO Journal 1989, 8: 4281-4288. PMID: 2686985, PMCID: PMC401634, DOI: 10.1002/j.1460-2075.1989.tb08614.x.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceCloning, MolecularDNA-Directed RNA PolymerasesGene ExpressionGenes, DominantGenes, FungalKineticsMolecular Sequence DataMutationOligonucleotide ProbesPlasmidsPromoter Regions, GeneticRNA Polymerase IIIRNA, RibosomalRNA, Ribosomal, 5SRNA, TransferSaccharomyces cerevisiaeSaccharomycetalesSchizosaccharomycesSelection, GeneticSuppression, GeneticTemplates, GeneticTranscription, GeneticConceptsTRNA genesMutant strainTranscription of mutantsTranscription of tRNARNA polymerase IIISuppressor tRNA geneDominant mutant geneWild-type strainStable complexesTranscription apparatusRNA genesStable complex formationUpstream geneTRNA suppressorsPositive regulatorSteady-state levelsComplex assemblyGenetic approachesPolymerase IIIGene transcriptionInternal promoterMutant geneTime-course experimentsTranscriptionGenes