2012
Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment
Ling J, Peterson KM, Simonović I, Cho C, Söll D, Simonović M. Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 3281-3286. PMID: 22343532, PMCID: PMC3295322, DOI: 10.1073/pnas.1200109109.Peer-Reviewed Original ResearchMeSH KeywordsAeropyrumAmino Acid SequenceAnticodonCatalytic DomainCodonCrystallography, X-RayEscherichia coliEvolution, MolecularLeucineMitochondriaModels, MolecularMolecular Sequence DataProtein ConformationProtein Structure, TertiaryRNA EditingRNA, Transfer, Amino AcylSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence AlignmentSpecies SpecificityStaphylococcus aureusSubstrate SpecificityThreonineThreonine-tRNA LigaseConceptsThreonyl-tRNA synthetaseAnticodon loopAnticodon sequenceEscherichia coli ThrRSSet of tRNAsDistinct recognition mechanismsAnticodon-binding domainAminoacyl-tRNA synthetasesCUN codonsDetailed structural comparisonCodon reassignmentYeast mitochondriaGenetic codeTRNA isoacceptorsSaccharomyces cerevisiaeIsoacceptor tRNAsEditing domainTRNAMST1Anticodon tripletStructural comparisonNatural tRNAAmino acidsDistinct mechanismsRecognition mechanism
2010
Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation
Nureki O, O’Donoghue P, Watanabe N, Ohmori A, Oshikane H, Araiso Y, Sheppard K, Söll D, Ishitani R. Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation. Nucleic Acids Research 2010, 38: 7286-7297. PMID: 20601684, PMCID: PMC2978374, DOI: 10.1093/nar/gkq605.Peer-Reviewed Original ResearchConceptsNon-discriminating glutamyl-tRNA synthetaseGlutamyl-tRNA synthetaseND-GluRSEscherichia coli GlnRSFormation of GlnCognate tRNA moleculesGlutaminyl-tRNA synthetaseAnticodon-binding domainEvolutionary predecessorPhylogenetic analysisGenetic codeMolecular basisTRNA moleculesRecognition pocketGlnRGenetic encodingAmino acidsSpecific ligationStructural determinantsKey eventsSynthetaseGluPromiscuous recognitionGluRGln
2009
The Human SepSecS-tRNASec Complex Reveals the Mechanism of Selenocysteine Formation
Palioura S, Sherrer RL, Steitz TA, Söll D, Simonović M. The Human SepSecS-tRNASec Complex Reveals the Mechanism of Selenocysteine Formation. Science 2009, 325: 321-325. PMID: 19608919, PMCID: PMC2857584, DOI: 10.1126/science.1173755.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceBiocatalysisCatalytic DomainCrystallography, X-RayHumansHydrogen BondingModels, MolecularMolecular Sequence DataNucleic Acid ConformationPhosphatesPhosphoserineProtein ConformationProtein MultimerizationProtein Structure, SecondaryRNA, Transfer, Amino Acid-SpecificRNA, Transfer, Amino AcylSelenocysteineConceptsTransfer RNASelenocysteine formationSelenocysteinyl-tRNA synthaseCognate transfer RNAEnzyme active siteTRNA bindingActive siteConformational changesEnzyme assaysAmino acidsFree phosphoserinePhosphoserineSepSecSFinal stepSelenocysteineBiosynthesisComplexesRNAMechanismBindsCrystal structureSynthaseBindingFormationAssays
2008
Quality control despite mistranslation caused by an ambiguous genetic code
Ruan B, Palioura S, Sabina J, Marvin-Guy L, Kochhar S, LaRossa RA, Söll D. Quality control despite mistranslation caused by an ambiguous genetic code. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 16502-16507. PMID: 18946032, PMCID: PMC2575449, DOI: 10.1073/pnas.0809179105.Peer-Reviewed Original ResearchMeSH KeywordsEscherichia coliGenetic CodeHeat-Shock ResponseMass SpectrometryMutation, MissenseProtein BiosynthesisRNA, Transfer, Amino AcylConceptsGenetic codeAa-tRNAWild-type proteinAminoacyl-tRNA synthetasesInactive mutant proteinsHeat shock responseE. coliMutant proteinsReporter proteinMissense suppressionFunctional proteinsCognate tRNASelective pressureAminoacyl-tRNAActive enzymeShock responseProtein synthesisNative conformationEnergetic costAmino acidsMissense mutationsProteinBiochemical evidenceCorrect pairingProtein qualityCharacterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation
Sherrer RL, O’Donoghue P, Söll D. Characterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation. Nucleic Acids Research 2008, 36: 1247-1259. PMID: 18174226, PMCID: PMC2275090, DOI: 10.1093/nar/gkm1134.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphatasesAdenosine TriphosphateAmino Acid SequenceArchaeal ProteinsBinding SitesEvolution, MolecularKineticsMethanococcalesModels, MolecularMutationPhosphotransferasesPhylogenyProtein Structure, TertiaryRNA, Transfer, Amino AcylSequence AlignmentSingle-Strand Specific DNA and RNA EndonucleasesSubstrate SpecificityConceptsATPase active sitePhosphate-binding loopInduced fit mechanismRxxxR motifEvolutionary historyWalker BKinase familyPhylogenetic analysisSep-tRNARelated kinasesPSTKBiochemical characterizationSynthase convertsFit mechanismKinaseATPase activityPlasmodium speciesMotifActive siteSerHigh affinityDecreased activityArchaeaSepSecSSer18
2005
RNA-Dependent Cysteine Biosynthesis in Archaea
Sauerwald A, Zhu W, Major TA, Roy H, Palioura S, Jahn D, Whitman WB, Yates JR, Ibba M, Söll D. RNA-Dependent Cysteine Biosynthesis in Archaea. Science 2005, 307: 1969-1972. PMID: 15790858, DOI: 10.1126/science.1108329.Peer-Reviewed Original ResearchConceptsCysteine biosynthesisSep-tRNAComparative genomic analysisCys-tRNA synthasePhosphoseryl-tRNA synthetaseCys-tRNACysteine auxotrophyMost organismsMethanocaldococcus jannaschiiMethanococcus maripaludisGenetic codeGenomic analysisEssential enzymeO-phosphoserineBiosynthesisRNA synthetaseOrganismsSepRSSynthetasePartial purificationCysteineSole routeArchaeaSepCysSJannaschii
2004
Cys-tRNACys formation and cysteine biosynthesis in methanogenic archaea: two faces of the same problem?
Ambrogelly A, Kamtekar S, Sauerwald A, Ruan B, Tumbula-Hansen D, Kennedy D, Ahel I, Söll D. Cys-tRNACys formation and cysteine biosynthesis in methanogenic archaea: two faces of the same problem? Cellular And Molecular Life Sciences 2004, 61: 2437-2445. PMID: 15526152, DOI: 10.1007/s00018-004-4194-9.Peer-Reviewed Original ResearchMeSH KeywordsArchaeaBinding SitesCysteineGenes, ArchaealMethaneModels, BiologicalModels, MolecularPhylogenyProtein BiosynthesisProtein ConformationRNARNA, Transfer, Amino AcylConceptsMethanogenic archaeaCysteine biosynthesisCellular translation machineryAminoacyl-tRNA synthesisCanonical cysteinyl-tRNA synthetaseAminoacyl-tRNA synthetasesCysteinyl-tRNA synthetaseRecognizable genesTranslation machineryGenome sequenceArchaeaBiosynthesisEssential componentSynthetasesTRNARibosomesGenesMachineryOrganismsSynthetasePossible linkSequenceFormationThe unusual methanogenic seryl‐tRNA synthetase recognizes tRNASer species from all three kingdoms of life
Bilokapic S, Korencic D, Söll D, Weygand‐Durasevic I. The unusual methanogenic seryl‐tRNA synthetase recognizes tRNASer species from all three kingdoms of life. The FEBS Journal 2004, 271: 694-702. PMID: 14764085, DOI: 10.1111/j.1432-1033.2003.03971.x.Peer-Reviewed Original ResearchMeSH KeywordsAnticodonBase SequenceChromatography, GelDimerizationElectrophoretic Mobility Shift AssayEscherichia coliIsoelectric FocusingMethanococcusMolecular Sequence DataNucleic Acid ConformationProtein BindingRNA, Transfer, Amino AcylRNA, Transfer, SerSerineSerine-tRNA LigaseSubstrate SpecificityTranscription, GeneticYeastsConceptsSeryl-tRNA synthetaseGel mobility shift assaysKingdoms of lifeMobility shift assaysMethanococcus jannaschiiM. maripaludisTRNA recognitionShift assaysTRNARenaturation conditionsGel filtration chromatographyConformation of tRNAComplex formationSpeciesFiltration chromatographySynthetaseDimerizationSerRSsJannaschiiTRNASerIsoacceptorsHomologuesComplementary oligonucleotidesAminoacylationRenaturation
2001
A dual‐specific Glu‐tRNAGln and Asp‐tRNAAsn amidotransferase is involved in decoding glutamine and asparagine codons in Acidithiobacillus ferrooxidans
Salazar J, Zúñiga R, Raczniak G, Becker H, Söll D, Orellana O. A dual‐specific Glu‐tRNAGln and Asp‐tRNAAsn amidotransferase is involved in decoding glutamine and asparagine codons in Acidithiobacillus ferrooxidans. FEBS Letters 2001, 500: 129-131. PMID: 11445070, DOI: 10.1016/s0014-5793(01)02600-x.Peer-Reviewed Original ResearchConceptsOperon-like structureGlutaminyl-tRNA synthetaseGlutamyl-tRNA synthetaseA. ferrooxidansAsparaginyl-tRNA synthetaseTransamidation pathwayGat genesGlu-tRNAGlnBioleaching of mineralsAsn-tRNAAcidithiobacillus ferrooxidansGln-tRNAAsparagine codonsSynthetase enzymeBacillus subtilisAcidophilic bacteriumEscherichia coliBiochemical analysisAmidotransferaseSynthetaseGenesGenomics and the evolution of aminoacyl-tRNA synthesis.
Ruan B, Ahel I, Ambrogelly A, Becker H, Bunjun S, Feng L, Tumbula-Hansen D, Ibba M, Korencic D, Kobayashi H, Jacquin-Becker C, Mejlhede N, Min B, Raczniak G, Rinehart J, Stathopoulos C, Li T, Söll D. Genomics and the evolution of aminoacyl-tRNA synthesis. Acta Biochimica Polonica 2001, 48: 313-21. PMID: 11732603, DOI: 10.18388/abp.2001_3917.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesEvolution, MolecularGenomicsPhylogenyProtein BiosynthesisRNA, MessengerRNA, Transfer, Amino AcylConceptsAminoacyl-tRNA synthesisAminoacyl-tRNA synthetasesTransfer RNAsAmino acidsMessenger RNAGenetic informationContemporary aminoacyl-tRNA synthetasesDirect protein synthesisNon-canonical routesEvolutionary diversityEvolutionary divergenceCys-tRNANascent polypeptidesRibosome movesAsn-tRNAGln-tRNAWhole genomeAppropriate amino acidsTRNA anticodonSubstrate specificityLys-tRNATrinucleotide codonsNext codonUnexpected levelProtein synthesisThe renaissance of aminoacyl‐tRNA synthesis
Ibba M, Söll D. The renaissance of aminoacyl‐tRNA synthesis. EMBO Reports 2001, 2: 382-387. PMID: 11375928, PMCID: PMC1083889, DOI: 10.1093/embo-reports/kve095.Peer-Reviewed Original ResearchMeSH KeywordsAmino AcidsAmino Acyl-tRNA SynthetasesAnimalsArchaeaBacteriaEvolution, MolecularProtein BiosynthesisRNA, Transfer, Amino AcylConceptsAminoacyl-tRNA synthesisProtein synthesisRole of tRNAEvolutionary diversityStructural biologyMolecular biologistsUnexpected arrayMolecular biologyNew enzymeDecades of studyAmino acidsEssential processTRNABiologyComplete pictureGenomicsAdaptorBiologistsDiversityEnzymePathwayHigh degreeSynthesisNumerous milestones
2000
Methanococcus jannaschii Prolyl-Cysteinyl-tRNA Synthetase Possesses Overlapping Amino Acid Binding Sites †
Stathopoulos C, Jacquin-Becker C, Becker H, Li T, Ambrogelly A, Longman R, Söll D. Methanococcus jannaschii Prolyl-Cysteinyl-tRNA Synthetase Possesses Overlapping Amino Acid Binding Sites †. Biochemistry 2000, 40: 46-52. PMID: 11141055, DOI: 10.1021/bi002108x.Peer-Reviewed Original ResearchConceptsAmino acidsTRNA synthetaseProtein translation apparatusCysteinyl-tRNA synthetase activityCognate tRNA speciesSite-directed mutagenesisAmino acid activationAbsence of tRNAAmino acid residuesSynthetase activityTranslation apparatusMethanococcus jannaschiiTRNA speciesCysteine activationUnusual enzymeDifferent amino acidsMutant enzymesCysteine bindingProline bindingProlyl-tRNA synthetase activityAcid residuesAminoacyl-tRNAPosition 103Single enzymeDomain-specific recruitment of amide amino acids for protein synthesis
Tumbula D, Becker H, Chang W, Söll D. Domain-specific recruitment of amide amino acids for protein synthesis. Nature 2000, 407: 106-110. PMID: 10993083, DOI: 10.1038/35024120.Peer-Reviewed Original ResearchMeSH KeywordsAmidesAmino AcidsArchaeaCloning, MolecularEscherichia coliMethanobacteriumNitrogenous Group TransferasesPeptide BiosynthesisProtein Structure, TertiaryRNA, Transfer, Amino AcylConceptsGlutaminyl-tRNA synthetaseAsparaginyl-tRNA synthetaseProtein synthesisAmino acidsAminoacyl-transfer RNAAmino acid metabolismGlu-tRNAGlnAsn-tRNAProtein biosynthesisGln-tRNAArchaeaTRNASynthetaseAmidotransferaseBacteriaAmidotransferasesDirect evidenceDifferent mechanismsBiosynthesisCentral importanceCrucial stepRNAOrganismsDomainCytoplasmThe heterotrimeric Thermus thermophilus Asp‐tRNAAsn amidotransferase can also generate Gln‐tRNAGln
Becker H, Min B, Jacobi C, Raczniak G, Pelaschier J, Roy H, Klein S, Kern D, Söll D. The heterotrimeric Thermus thermophilus Asp‐tRNAAsn amidotransferase can also generate Gln‐tRNAGln. FEBS Letters 2000, 476: 140-144. PMID: 10913601, DOI: 10.1016/s0014-5793(00)01697-5.Peer-Reviewed Original ResearchAMINOACYL-tRNA SYNTHESIS
Ibba M, Söll D. AMINOACYL-tRNA SYNTHESIS. Annual Review Of Biochemistry 2000, 69: 617-650. PMID: 10966471, DOI: 10.1146/annurev.biochem.69.1.617.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacteriaBacterial InfectionsBiological EvolutionEnzyme InhibitorsHumansModels, MolecularRNA, Transfer, Amino AcylConceptsAminoacyl-tRNA synthesisAmino acidsAminoacyl-tRNA synthetaseEvolutionary facetsWhole-genome sequencingCorresponding tRNAsGenetic codeGenome sequencingAminoacyl-tRNACorresponding anticodonTRNACurrent knowledgeStructural dataRecent studiesAnticodonDetailed pictureAcidSequencingSynthetaseEditingProofreadingSynthesisTranslationDirect attachmentOne Polypeptide with Two Aminoacyl-tRNA Synthetase Activities
Stathopoulos C, Li T, Longman R, Vothknecht U, Becker H, Ibba M, Söll D. One Polypeptide with Two Aminoacyl-tRNA Synthetase Activities. Science 2000, 287: 479-482. PMID: 10642548, DOI: 10.1126/science.287.5452.479.Peer-Reviewed Original ResearchConceptsProlyl-tRNA synthetaseProtein synthesisCysteinyl-tRNA synthetase activityAmino-terminal sequenceSynthetase activityAminoacyl-tRNA synthetase activityCertain archaeaEvolutionary originMethanococcus jannaschiiGenome sequenceSubstrate specificityGenetic analysisSuch organismsMessenger RNARNA synthetasesSynthetaseSequenceArchaeaJannaschiiSynthetasesRNAOrganismsPolypeptideProlylProtein
1999
Cysteinyl‐tRNA formation: the last puzzle of aminoacyl‐tRNA synthesis
Li T, Graham D, Stathopoulos C, Haney P, Kim H, Vothknecht U, Kitabatake M, Hong K, Eggertsson G, Curnow A, Lin W, Celic I, Whitman W, Söll D. Cysteinyl‐tRNA formation: the last puzzle of aminoacyl‐tRNA synthesis. FEBS Letters 1999, 462: 302-306. PMID: 10622715, DOI: 10.1016/s0014-5793(99)01550-1.Peer-Reviewed Original ResearchConceptsLateral gene transferAminoacyl-tRNA synthesisCysteinyl-tRNA synthetaseEscherichia coli cysteinyl-tRNA synthetaseMolecular phylogenyPyrococcus sppMethanococcus jannaschiiMethanococcus maripaludisM. maripaludisMethanogenic archaeaMethanosarcina sppGene transferCysRSMethanosarcina barkeriGenesSpecific relativeLast puzzleSppOrthologsArchaeaPhylogenyJannaschiiMutantsLineagesOrganismsTransfer RNA identity contributes to transition state stabilization during aminoacyl-tRNA synthesis
Ibba M, Sever S, Praetorius-Ibba M, Söll D. Transfer RNA identity contributes to transition state stabilization during aminoacyl-tRNA synthesis. Nucleic Acids Research 1999, 27: 3631-3637. PMID: 10471730, PMCID: PMC148616, DOI: 10.1093/nar/27.18.3631.Peer-Reviewed Original ResearchArchaeal aminoacyl-tRNA synthesis: unique determinants of a universal genetic code?
Ibba M, Curnow A, Bono J, Rosa P, Woese C, Söll D. Archaeal aminoacyl-tRNA synthesis: unique determinants of a universal genetic code? Biological Bulletin 1999, 196: 335-6; discussion 336-7. PMID: 10390832, DOI: 10.2307/1542964.Peer-Reviewed Original ResearchSubstrate recognition by class I lysyl-tRNA synthetases: A molecular basis for gene displacement
Ibba M, Losey H, Kawarabayasi Y, Kikuchi H, Bunjun S, Söll D. Substrate recognition by class I lysyl-tRNA synthetases: A molecular basis for gene displacement. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 418-423. PMID: 9892648, PMCID: PMC15151, DOI: 10.1073/pnas.96.2.418.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceBorrelia burgdorferi GroupCloning, MolecularDiphosphatesEscherichia coliEvolution, MolecularGenes, ArchaealGenes, BacterialGenetic Complementation TestKineticsLysine-tRNA LigaseMethanococcusMolecular Sequence DataNucleic Acid ConformationPhylogenyRNA, Transfer, Amino AcylSequence Analysis, DNASubstrate SpecificityTranscription, GeneticConceptsClass II LysRSAminoacyl-tRNA synthetasesLysyl-tRNA synthetasesSubstrate recognitionMolecular basisBacterial class IClass II enzymesSequence-specific recognitionGene displacementTranslational apparatusTRNA recognitionEscherichia coli strainsLysRSLysRSsSame nucleotideSynthetasesDiscriminator baseUnrelated typesLysine activationCertain bacteriaII enzymesColi strainsTRNALysClass IEnzyme