2024
Engineered mRNA–ribosome fusions for facile biosynthesis of selenoproteins
Thaenert A, Sevostyanova A, Chung C, Vargas-Rodriguez O, Melnikov S, Söll D. Engineered mRNA–ribosome fusions for facile biosynthesis of selenoproteins. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2321700121. PMID: 38442159, PMCID: PMC10945757, DOI: 10.1073/pnas.2321700121.Peer-Reviewed Original ResearchMeSH KeywordsCodon, TerminatorEscherichia coliMagnoliopsidaRibosomesRNA, MessengerRNA, Ribosomal, 16SSelenocysteineSelenoproteinsConceptsSelenocysteine insertion sequenceRibosomal RNARibosome engineeringMessenger RNARegulatory RNA elementsMachinery of protein synthesisInsertion of SecSec-containing proteinsSite-specific insertionBiosynthesis of selenoproteinsNatural messenger RNALive bacterial cellsRNA elementsUAG codonInsertion sequenceRibosome structureUGA codonSec codonInsert SecStop codonSynthetic biologyDesigning proteinsRibosomePolypeptide chainBacterial cells
2018
Transfer RNA function and evolution
O’Donoghue P, Ling J, Söll D. Transfer RNA function and evolution. RNA Biology 2018, 15: 423-426. PMID: 30099966, PMCID: PMC6103721, DOI: 10.1080/15476286.2018.1478942.Peer-Reviewed Original Research
2001
Genomics and the evolution of aminoacyl-tRNA synthesis.
Ruan B, Ahel I, Ambrogelly A, Becker H, Bunjun S, Feng L, Tumbula-Hansen D, Ibba M, Korencic D, Kobayashi H, Jacquin-Becker C, Mejlhede N, Min B, Raczniak G, Rinehart J, Stathopoulos C, Li T, Söll D. Genomics and the evolution of aminoacyl-tRNA synthesis. Acta Biochimica Polonica 2001, 48: 313-21. PMID: 11732603, DOI: 10.18388/abp.2001_3917.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthesisAminoacyl-tRNA synthetasesTransfer RNAsAmino acidsMessenger RNAGenetic informationContemporary aminoacyl-tRNA synthetasesDirect protein synthesisNon-canonical routesEvolutionary diversityEvolutionary divergenceCys-tRNANascent polypeptidesRibosome movesAsn-tRNAGln-tRNAWhole genomeAppropriate amino acidsTRNA anticodonSubstrate specificityLys-tRNATrinucleotide codonsNext codonUnexpected levelProtein synthesis
1996
The C-terminal Extension of Yeast Seryl-tRNA Synthetase Affects Stability of the Enzyme and Its Substrate Affinity (*)
Weygand-Durasevic I, Lenhard B, Filipic S, Söll D. The C-terminal Extension of Yeast Seryl-tRNA Synthetase Affects Stability of the Enzyme and Its Substrate Affinity (*). Journal Of Biological Chemistry 1996, 271: 2455-2461. PMID: 8576207, DOI: 10.1074/jbc.271.5.2455.Peer-Reviewed Original Research
1993
Two members of the ERabp gene family are expressed differentially in reproductive organs but to similar levels in the coleoptile of maize
Hesse T, Garbers C, Brzobohaty B, Kreimer G, Söll D, Melkonian M, Schell J, Palme K. Two members of the ERabp gene family are expressed differentially in reproductive organs but to similar levels in the coleoptile of maize. Plant Molecular Biology 1993, 23: 57-66. PMID: 8219056, DOI: 10.1007/bf00021419.Peer-Reviewed Original ResearchConceptsC-terminal KDEL motifExpression patternsN-terminal hydrophobic leader sequenceColeoptiles of maizePrimary amino acid sequenceFemale flower partsHydrophobic leader sequenceAmino acid sequencePotential glycosylation sitesGene familyFlower organsKDEL motifProtein familyCDNA clonesLeader sequenceMaize seedlingsAcid sequenceGlycosylation sitesPrimary leavesFlower partsGenesLaser scanning microscopyRetention of proteinsReproductive organsNew member
1989
Characterization of cis-acting mutations which increase expression of a glnS-lacZ fusion in Escherichia coli
Plumbridge J, Söll D. Characterization of cis-acting mutations which increase expression of a glnS-lacZ fusion in Escherichia coli. Molecular Genetics And Genomics 1989, 216: 113-119. PMID: 2471922, DOI: 10.1007/bf00332238.Peer-Reviewed Original Research
1988
Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli.
Eggertsson G, Söll D. Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli. Microbiology And Molecular Biology Reviews 1988, 52: 354-74. PMID: 3054467, PMCID: PMC373150, DOI: 10.1128/mr.52.3.354-374.1988.Peer-Reviewed Original Research
1987
Cloning and characterization of the gene coding for cytoplasmic seryl-tRNA synthetase from Saccharomyces cerevisiae
Weygand-Durasevic I, johnson-Burke D, Söll D. Cloning and characterization of the gene coding for cytoplasmic seryl-tRNA synthetase from Saccharomyces cerevisiae. Nucleic Acids Research 1987, 15: 1887-1904. PMID: 3031581, PMCID: PMC340606, DOI: 10.1093/nar/15.5.1887.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseSingle open reading frameAbundant yeast proteinsGenomic Southern blotsNuclease S1 analysisOpen reading frameTranslation initiation codonAmino acid sequenceKb SalI fragmentNucleotide sequence analysisAT-rich sequencesYeast proteinsStructural geneCodon usageS1 analysisTATA boxInitiation codonReading frameSer geneSalI fragmentAcid sequenceExpression librarySequence analysisRich sequencesSouthern blot
1985
A wheat HMW glutenin subunit gene reveals a highly repeated structure
Sugiyama T, Rafalski A, Peterson D, Söll D. A wheat HMW glutenin subunit gene reveals a highly repeated structure. Nucleic Acids Research 1985, 13: 8729-8737. PMID: 3001648, PMCID: PMC318947, DOI: 10.1093/nar/13.24.8729.Peer-Reviewed Original ResearchConceptsTypical eukaryotic promoterWheat genomic libraryHMW glutenin subunit genesRNA initiation siteGlutenin subunit genesPartial cDNA cloneAmino acid sequenceMature proteinGenomic libraryGlutenin genesEukaryotic promotersCDNA clonesGene sequencesProline contentSubunit geneAcid sequenceGrain endospermInitiation siteQuality of wheatGenesSynthetic oligonucleotidesHigh glutamineMolecular weightProteinClonesConservation and variability of wheat α/β-gliadin genes
Sumner-Smith M, Rafalski J, Sugiyama T, Stoll M, Sōll D. Conservation and variability of wheat α/β-gliadin genes. Nucleic Acids Research 1985, 13: 3905-3916. PMID: 3839304, PMCID: PMC341285, DOI: 10.1093/nar/13.11.3905.Peer-Reviewed Original ResearchConceptsTypical eukaryotic promoterStorage protein genesEvolutionary relatednessGenomic clonesGliadin genesEukaryotic promotersGliadin familyProtein genePolyadenylation signalPolyglutamine stretchGene multiplicationClose homologyGlutamine codonGenesCertain mutationsCodonUnusual structureP-boxesIntronsHomologyPromoterPlantsProlineClonesRelatednessTwo control systems modulate the level of glutaminyl-tRNA synthetase in Escherichia coli
Cheung A, Watson L, Söll D. Two control systems modulate the level of glutaminyl-tRNA synthetase in Escherichia coli. Journal Of Bacteriology 1985, 161: 212-218. PMID: 2578447, PMCID: PMC214858, DOI: 10.1128/jb.161.1.212-218.1985.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseEscherichia coli glutaminyl-tRNA synthetaseBeta-galactosidase structural genePost-transcriptional regulationStructural geneTranscriptional controlRegulatory mutationsTranslational levelGln-10Metabolic regulationEscherichia coliSynthetaseVivo expressionTranscriptionGrowth conditionsRegulationMRNA levelsRegulatory studiesSynthetase levelsMutationsGlnGrowth rateGenesPromoterColi
1984
In vivo and in vitro transcription of the Escherichia coli glutaminyl-tRNA synthetase gene.
Cheung A, Söll D. In vivo and in vitro transcription of the Escherichia coli glutaminyl-tRNA synthetase gene. Journal Of Biological Chemistry 1984, 259: 9953-9958. PMID: 6086662, DOI: 10.1016/s0021-9258(17)42791-8.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseGlutaminyl-tRNA synthetase geneTranslation initiation codon AUGInitiation codon AUGPresence of tRNATermination codon UAAGlnS geneTerminator structureTranscription initiationSynthetase geneTranscription initiatesCodons UAARegulatory signalsCodon AUGTermination sitesTranscription productsSequence analysisStructure upstreamStructural regionsTranscriptionGenesTranscriptsSynthetaseMRNAGlnDevelopmentally regulated plant genes: the nucleotide sequence of a wheat gliadin genomic clone.
Rafalski J, Scheets K, Metzler M, Peterson D, Hedgcoth C, Söll D. Developmentally regulated plant genes: the nucleotide sequence of a wheat gliadin genomic clone. The EMBO Journal 1984, 3: 1409-1415. PMID: 6204862, PMCID: PMC557531, DOI: 10.1002/j.1460-2075.1984.tb01985.x.Peer-Reviewed Original ResearchConceptsCDNA clonesGenomic clonesWheat genomic libraryWheat seed storage proteinsInternal sequence repetitionSeed storage proteinsSuch genomic clonesTranslation termination codonEukaryotic promoter sequencesPlant genesNorthern blot analysisMultigene familyGliadin genesGenomic libraryHybrid-selected mRNA translationMRNA translationCDNA sequenceGene sequencesPromoter sequencesCDNA libraryStorage proteinsDNA sequencesNucleotide sequenceNumber of clonesTermination codon
1979
Characterization of a UGA-suppressing serine tRNA from Schizosaccharomyces pombe with the help of a new in vitro assay system for eukaryotic suppressor tRNAs.
Kohli J, Kwong T, Altruda F, Söll D, Wahl G. Characterization of a UGA-suppressing serine tRNA from Schizosaccharomyces pombe with the help of a new in vitro assay system for eukaryotic suppressor tRNAs. Journal Of Biological Chemistry 1979, 254: 1546-1551. PMID: 762155, DOI: 10.1016/s0021-9258(17)37806-7.Peer-Reviewed Original ResearchConceptsOpal suppressor tRNASuppressor tRNAReadthrough productSchizosaccharomyces pombeFission yeast Schizosaccharomyces pombeYeast Schizosaccharomyces pombeOchre suppressor tRNAUGA termination codonBeta-globin mRNARabbit beta-globin mRNARabbit globin mRNAWheat germ extractSuppressor mutantsS. pombeNonsense suppressionPure tRNAsAlpha-globinSerine tRNATermination codonGlobin mRNATRNAPombeGerm extractSerineAssay systemThe nucleotide sequence of a UGA suppressor serine tRNA from Schizosaccharomyces pombe
Rafalski A, Kohli J, Agris P, Söll D. The nucleotide sequence of a UGA suppressor serine tRNA from Schizosaccharomyces pombe. Nucleic Acids Research 1979, 6: 2683-2695. PMID: 461200, PMCID: PMC327885, DOI: 10.1093/nar/6.8.2683.Peer-Reviewed Original Research
1968
Structure and function of Escherichia coli ribosomes II. Translational fidelity and efficiency in protein synthesis of a protein-deficient subribosomal particle
Traub P, Söll D, Nomura M. Structure and function of Escherichia coli ribosomes II. Translational fidelity and efficiency in protein synthesis of a protein-deficient subribosomal particle. Journal Of Molecular Biology 1968, 34: 595-608. PMID: 4938559, DOI: 10.1016/0022-2836(68)90183-6.Peer-Reviewed Original Research
1967
Studies on polynucleotides LXVII. Initiation of protein synthesis in vitro as studied by using ribopolynucleotides with repeating nucleotide sequences as messengers
Ghosh H, Söll D, Khorana H. Studies on polynucleotides LXVII. Initiation of protein synthesis in vitro as studied by using ribopolynucleotides with repeating nucleotide sequences as messengers. Journal Of Molecular Biology 1967, 25: 275-298. PMID: 5340533, DOI: 10.1016/0022-2836(67)90142-8.Peer-Reviewed Original Research