2022
Unconventional genetic code systems in archaea
Meng K, Chung CZ, Söll D, Krahn N. Unconventional genetic code systems in archaea. Frontiers In Microbiology 2022, 13: 1007832. PMID: 36160229, PMCID: PMC9499178, DOI: 10.3389/fmicb.2022.1007832.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsGenetic code systemAmino acidsTRNA-dependent pathwayCanonical amino acidsRare amino acidArchaeal lineagesArchaeal speciesSingle lineageArchaeaMolecular mechanismsThird domainExtreme environmentsRecent discoveryLineagesBiochemical elementsHarsh conditionsEukaryotesPyrrolysineSelenocysteineOrganismsSpeciesBacteriaPathwayAcidDiscovery
2010
Mutations Disrupting Selenocysteine Formation Cause Progressive Cerebello-Cerebral Atrophy
Agamy O, Zeev B, Lev D, Marcus B, Fine D, Su D, Narkis G, Ofir R, Hoffmann C, Leshinsky-Silver E, Flusser H, Sivan S, Söll D, Lerman-Sagie T, Birk OS. Mutations Disrupting Selenocysteine Formation Cause Progressive Cerebello-Cerebral Atrophy. American Journal Of Human Genetics 2010, 87: 538-544. PMID: 20920667, PMCID: PMC2948803, DOI: 10.1016/j.ajhg.2010.09.007.Peer-Reviewed Original Research
2009
The Human SepSecS-tRNASec Complex Reveals the Mechanism of Selenocysteine Formation
Palioura S, Sherrer RL, Steitz TA, Söll D, Simonović M. The Human SepSecS-tRNASec Complex Reveals the Mechanism of Selenocysteine Formation. Science 2009, 325: 321-325. PMID: 19608919, PMCID: PMC2857584, DOI: 10.1126/science.1173755.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceBiocatalysisCatalytic DomainCrystallography, X-RayHumansHydrogen BondingModels, MolecularMolecular Sequence DataNucleic Acid ConformationPhosphatesPhosphoserineProtein ConformationProtein MultimerizationProtein Structure, SecondaryRNA, Transfer, Amino Acid-SpecificRNA, Transfer, Amino AcylSelenocysteineConceptsTransfer RNASelenocysteine formationSelenocysteinyl-tRNA synthaseCognate transfer RNAEnzyme active siteTRNA bindingActive siteConformational changesEnzyme assaysAmino acidsFree phosphoserinePhosphoserineSepSecSFinal stepSelenocysteineBiosynthesisComplexesRNAMechanismBindsCrystal structureSynthaseBindingFormationAssays
2008
Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality
Nozawa K, O’Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Söll D, Nureki O. Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality. Nature 2008, 457: 1163-1167. PMID: 19118381, PMCID: PMC2648862, DOI: 10.1038/nature07611.Peer-Reviewed Original ResearchConceptsAmino acidsMolecular basisLast universal common ancestorUniversal common ancestorUAG stop codonProteinogenic amino acidsCommon ancestorSuppressor tRNAStop codonDesulfitobacterium hafnienseStandard amino acidsTRNADistinct interactionsProteinPyrrolysinePylRSSelenocysteineAncestorCodonMachineryAcidVivoPairs
2007
3P019 Structural insights into RNA-dependent eukaryal and archaeal selenocysteine formation(Proteins-structure and structure-function relationship,Poster Presentations)
Araiso Y, Pailouer S, Ishitani R, Oshikane H, Domae N, Soll D, Nureki O. 3P019 Structural insights into RNA-dependent eukaryal and archaeal selenocysteine formation(Proteins-structure and structure-function relationship,Poster Presentations). Seibutsu Butsuri 2007, 47: s207. DOI: 10.2142/biophys.47.s207_4.Peer-Reviewed Original Research
2006
Aminoacyl‐tRNAs: Deciphering and Defining the Genetic Message
Ambrogelly A, Salazar J, Sheppard K, Polycarpo C, Oshikane H, Nakamura Y, Fukai S, Nureki O, Söll D. Aminoacyl‐tRNAs: Deciphering and Defining the Genetic Message. 2006, 207-215. DOI: 10.1002/9780470750865.ch18.Peer-Reviewed Original Research
1994
Glutamyl‐tRNA as an Intermediate in Glutamate Conversions
Verkamp E, Kumar A, Lloyd A, Martins O, Stange‐Thomann N, Söll D. Glutamyl‐tRNA as an Intermediate in Glutamate Conversions. 1994, 545-550. DOI: 10.1128/9781555818333.ch27.Peer-Reviewed Original ResearchNumber of reactionsPorphyrin ringInitial precursorSynthesis of selenocysteineReactionAmino acidsPhotosynthetic reactionsIntermediatesCompoundsChain formationConversionPrecursorsAcidFormationPorphyrinsFirst conversionHemeSynthesisMoleculesGlu-tRNATransamidationConversion of glutamateGlutamyl-tRNARingSelenocysteine
1989
The selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification
Schön A, Böck A, Ott G, Sprinzl M, Söll D. The selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification. Nucleic Acids Research 1989, 17: 7159-7165. PMID: 2529478, PMCID: PMC334795, DOI: 10.1093/nar/17.18.7159.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceChromatography, High Pressure LiquidCodonCysteineEscherichia coliGenes, BacterialMolecular Sequence DataNucleic Acid ConformationRNA, Transfer, Amino Acid-SpecificRNA, Transfer, SerSeleniumSelenocysteineStructure-Activity RelationshipSuppression, Genetic