2003
Non-canonical Eukaryotic Glutaminyl- and Glutamyl-tRNA Synthetases Form Mitochondrial Aminoacyl-tRNA in Trypanosoma brucei *
Rinehart J, Horn EK, Wei D, Söll D, Schneider A. Non-canonical Eukaryotic Glutaminyl- and Glutamyl-tRNA Synthetases Form Mitochondrial Aminoacyl-tRNA in Trypanosoma brucei *. Journal Of Biological Chemistry 2003, 279: 1161-1166. PMID: 14563839, DOI: 10.1074/jbc.m310100200.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseGlutamyl-tRNA synthetaseT. bruceiGln-tRNATrypanosoma bruceiInsect stage T. bruceiT. brucei enzymeRespective gene productsAminoacyl-tRNA synthetasesGlutamyl-tRNA synthetase activitySynthetase activityTransamidation pathwayLeishmania mitochondriaBrucei enzymeMitochondrial tRNAsGlu-tRNAProtein biosynthesisAminoacylation experimentsGene productsRNA interferenceTRNABruceiMitochondriaTotal tRNAGlutaminyl
2000
A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia
Bunjun S, Stathopoulos C, Graham D, Min B, Kitabatake M, Wang A, Wang C, Vivarès C, Weiss L, Söll D. A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 12997-13002. PMID: 11078517, PMCID: PMC27167, DOI: 10.1073/pnas.230444397.Peer-Reviewed Original ResearchConceptsCys-tRNAAminoacyl-tRNA synthetaseProlyl-tRNA synthetasePrimitive eukaryote Giardia lambliaPro geneEukaryote Giardia lambliaNumber of archaeaAlanyl-tRNA synthetasesCysteinyl-tRNA synthetaseE. coli tRNACysS genesM. jannaschiiMethanococcus jannaschiiMost organismsGenomic sequencesSaccharomyces cerevisiaeCysteinyl-tRNAGene productsPro-tRNATRNA synthetaseDual specificityMethanobacterium thermoautotrophicumProtein synthesisEscherichia coliAmino acids
1999
Mutations in a new Arabidopsis cyclophilin disrupt its interaction with protein phosphatase 2A
Jackson K, Söll D. Mutations in a new Arabidopsis cyclophilin disrupt its interaction with protein phosphatase 2A. Molecular Genetics And Genomics 1999, 262: 830-838. PMID: 10628867, DOI: 10.1007/s004380051147.Peer-Reviewed Original ResearchConceptsProtein phosphatase 2APhosphatase 2AHeterotrimeric protein phosphatase 2ARegulatory subunit AProtein phosphatase 2BMultiple signaling pathwaysAuxin transportPhosphatase 2BPP2A activityAntisense transcriptsResponse pathwaysArabidopsis extractsGene productsN-terminusRoot growthSubunit ASignaling pathwaysNovel cyclophilinCyclophilinArabidopsisAltered formsTranscriptsMutationsPathwayEukaryotes
1994
A point mutation in Euglena gracilis chloroplast tRNA(Glu) uncouples protein and chlorophyll biosynthesis.
Stange-Thomann N, Thomann H, Lloyd A, Lyman H, Söll D. A point mutation in Euglena gracilis chloroplast tRNA(Glu) uncouples protein and chlorophyll biosynthesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 1994, 91: 7947-7951. PMID: 8058739, PMCID: PMC44521, DOI: 10.1073/pnas.91.17.7947.Peer-Reviewed Original ResearchMeSH KeywordsAldehyde OxidoreductasesAnimalsBase SequenceBlotting, NorthernChlorophyllChloroplastsCloning, MolecularDNADNA PrimersEuglena gracilisIntramolecular TransferasesIsomerasesMolecular Sequence DataNucleic Acid ConformationPoint MutationPolymerase Chain ReactionProtein BiosynthesisRNA, Transfer, GluConceptsEuglena gracilis chloroplastsChlorophyll biosynthesisGlu-tRNA reductaseChlorophyll-deficient mutantsPoint mutationsChloroplast protein synthesisSequence-specific mannerDual-function moleculeC5 pathwayNADPH-dependent reductionSpecific cofactorsGluTRFirst enzymeGene productsUniversal precursorImportant identity elementAminomutase activitySequence analysisE. gracilisSecond enzymeTetrapyrrole pigmentsT-loopProtein synthesisBiosynthesisChloroplastsConnecting Anticodon Recognition with the Active Site of Escherichia coli Glutaminyl-tRNA Synthetase
Weygand-Duraševic I, Rogers M, Söll D. Connecting Anticodon Recognition with the Active Site of Escherichia coli Glutaminyl-tRNA Synthetase. Journal Of Molecular Biology 1994, 240: 111-118. PMID: 8027995, DOI: 10.1006/jmbi.1994.1425.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseAnticodon recognitionMutant enzymesEscherichia coli glutaminyl-tRNA synthetaseOpal suppressor tRNASpecificity constantMutant gene productsWild-type enzymeAmino acid loopExtensive conformational changesActive siteNumber of mutationsSuppressor tRNAGene productsGlnRPathways of communicationSaturation mutagenesisTRNAAcceptor stemAcid loopGenetic selectionConformational changesAnticodonPoor substrateAminoacylationA Lactobacillus nifS-like gene suppresses an Escherichia coli transaminase B mutation
Leong-Morgenthaler P, Oliver S, Hottinger H, Söll D. A Lactobacillus nifS-like gene suppresses an Escherichia coli transaminase B mutation. Biochimie 1994, 76: 45-49. PMID: 8031904, DOI: 10.1016/0300-9084(94)90061-2.Peer-Reviewed Original ResearchConceptsNifS-like genesNifS-like proteinsNif gene productsNif proteinsNif genesGene productsNitrogen-fixing bacteriaGroup of enzymesRemarkable sequence homologyCysteine desulfuraseSequence conservationEfficient nitrogen fixationLeucine auxotrophyTransaminase BDiverse functionsSequence homologyNitrogen fixationEscherichia coli strainsProtein productsMetabolic pathwaysAzotobacter vinelandiiGenesB mutationsProteinDissimilar mutations
1991
The Escherichia coli hemL gene encodes glutamate 1-semialdehyde aminotransferase
Ilag L, Jahn D, Eggertsson G, Söll D. The Escherichia coli hemL gene encodes glutamate 1-semialdehyde aminotransferase. Journal Of Bacteriology 1991, 173: 3408-3413. PMID: 2045363, PMCID: PMC207952, DOI: 10.1128/jb.173.11.3408-3413.1991.Peer-Reviewed Original ResearchMeSH KeywordsAminolevulinic AcidCentrifugation, Density GradientChromatography, High Pressure LiquidCloning, MolecularDose-Response Relationship, DrugElectrophoresis, Polyacrylamide GelEscherichia coliIntramolecular TransferasesIsomerasesMolecular WeightPyridoxal PhosphatePyridoxamineTransformation, GeneticConceptsGlu-tRNA reductaseTRNA-dependent transformationApparent native molecular massMolecular massGlutamyl-tRNA synthetaseNative molecular massAminoglycoside antibiotic kanamycinHemL geneWild-type DNAAuxotrophic phenotypeC5 pathwaySodium dodecyl sulfate-polyacrylamide gel electrophoresisDodecyl sulfate-polyacrylamide gel electrophoresisMap positionGSA aminotransferasePhysical mappingSulfate-polyacrylamide gel electrophoresisRate zonal sedimentationGene productsThird enzymeGlycerol gradientsApparent homogeneityAntibiotic kanamycinEscherichia coliPure protein
1989
The selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification
Schön A, Böck A, Ott G, Sprinzl M, Söll D. The selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification. Nucleic Acids Research 1989, 17: 7159-7165. PMID: 2529478, PMCID: PMC334795, DOI: 10.1093/nar/17.18.7159.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceChromatography, High Pressure LiquidCodonCysteineEscherichia coliGenes, BacterialMolecular Sequence DataNucleic Acid ConformationRNA, Transfer, Amino Acid-SpecificRNA, Transfer, SerSeleniumSelenocysteineStructure-Activity RelationshipSuppression, Genetic
1988
Escherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity.
Uemura H, Conley J, Yamao F, Rogers J, Söll D. Escherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity. Protein Sequences And Data Analysis 1988, 1: 479-85. PMID: 2464170.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseTRNA bindingEscherichia coli glutaminyl-tRNA synthetaseExtensive homology searchesSingle amino acid replacementSingle amino acid changeRegion of homologyAminoacyl-tRNA synthetasesAmino acid replacementsAminoacyl adenylate formationAmino acids 235Amino acid changesLittle apparent similarityGlnS geneTRNA discriminationHomology searchGene productsAcid replacementsShare regionsDifferent tRNAsShort stretchesGenetic selectionAcid changesAsn changeHomology
1984
Transfer RNA mischarging mediated by a mutant Escherichia coli glutaminyl-tRNA synthetase.
Inokuchi H, Hoben P, Yamao F, Ozeki H, Söll D. Transfer RNA mischarging mediated by a mutant Escherichia coli glutaminyl-tRNA synthetase. Proceedings Of The National Academy Of Sciences Of The United States Of America 1984, 81: 5076-5080. PMID: 6382258, PMCID: PMC391640, DOI: 10.1073/pnas.81.16.5076.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseGlnS geneEscherichia coli glutaminyl-tRNA synthetaseAminoacyl-tRNA synthetase genesEarlier genetic studiesAmber suppressor tRNAWild-type enzymeSynthetase geneTRNA speciesAmber anticodonAmber mutationMutant tRNAsSuppressor tRNAGene productsAltered specificityGln mutantMutant geneTransducing phageEnzyme structureGenetic studiesTRNAGenesMischargingBiochemical meansAminoacylation reaction
1982
Escherichia coli glutaminyl-tRNA synthetase. II. Characterization of the glnS gene product.
Hoben P, Royal N, Cheung A, Yamao F, Biemann K, Söll D. Escherichia coli glutaminyl-tRNA synthetase. II. Characterization of the glnS gene product. Journal Of Biological Chemistry 1982, 257: 11644-11650. PMID: 6749844, DOI: 10.1016/s0021-9258(18)33811-0.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetasePrimary sequenceDNA sequencesAminoacyl-tRNA synthetasesManual Edman degradationExtensive sequence repeatsCarboxypeptidase B digestionEscherichia coli K12NH2-terminal sequenceSequence repeatsStructural geneGene productsCarboxyl terminusSequence homologyHomologous regionsTwo-column procedureEdman degradationColi K12B digestionSynthetaseSynthetasesTheoretical peptidesSequencePosition 550Enzyme
1979
Suppression
Steege D, Söll D. Suppression. Biological Regulation And Development 1979, 433-485. DOI: 10.1007/978-1-4684-3417-0_11.Peer-Reviewed Original ResearchGenetic suppressionType phenotypeFinal gene productsWild-type phenotypePairs of genesInformational suppressorsSuppressor mutationsNonsense suppressionMissense suppressionGene productsMolecular basisFrameshift suppressionGene expressionMutant organismsMolecular mechanismsCell metabolismGenetic selectionGenetic termsMutationsSecondary mutationsTranscriptionMacromolecular componentsPrimary mutationsSuppressorPhenotype
1978
Regulation of the Biosynthesis of Aminoacid:tRNA Ligases and of †RNA
Morgan S, Söll D. Regulation of the Biosynthesis of Aminoacid:tRNA Ligases and of †RNA. Progress In Nucleic Acid Research And Molecular Biology 1978, 21: 181-207. PMID: 358278, DOI: 10.1016/s0079-6603(08)60270-6.Peer-Reviewed Original ResearchConceptsTRNA ligasesBiosynthetic enzymesAmino acid biosynthetic enzymesTranscription-translation systemE. coli DNA fragmentsRegulation of biosynthesisComplex regulation patternAmino acid restrictionRegulatory mutantsTRNA ligaseLigasesGene productsRegulation of levelsRegulation patternsBacterial systemsDNA fragmentsAminoacyl-tRNAProtein synthesisTRNACellular constituentsPhysiological responsesSingle aminoacidsRegulationBiosynthesisEnzyme