2023
Mistranslation of the genetic code by a new family of bacterial transfer RNAs
Schuntermann D, Fischer J, Bile J, Gaier S, Shelley B, Awawdeh A, Jahn M, Hoffman K, Westhof E, Söll D, Clarke C, Vargas-Rodriguez O. Mistranslation of the genetic code by a new family of bacterial transfer RNAs. Journal Of Biological Chemistry 2023, 299: 104852. PMID: 37224963, PMCID: PMC10404621, DOI: 10.1016/j.jbc.2023.104852.Peer-Reviewed Original ResearchConceptsTransfer RNAsAmino acidsBacterial transfer RNAsUnfavorable environmental conditionsProlyl-tRNA synthetaseWrong amino acidPoor substrate specificitySubstrate discriminationGrowth defectTransfer RNAGenetic codePosttranslational modificationsProtein reporterTranslation factorsEnvironmental stressFunctional proteinsSubstrate specificityThreonine codonGenetic informationDistinct isoformsPro mutationAntibiotic carbenicillinEscherichia coliNovel familyEnvironmental conditions
2011
Rational design of an evolutionary precursor of glutaminyl-tRNA synthetase
O’Donoghue P, Sheppard K, Nureki O, Söll D. Rational design of an evolutionary precursor of glutaminyl-tRNA synthetase. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 20485-20490. PMID: 22158897, PMCID: PMC3251134, DOI: 10.1073/pnas.1117294108.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino Acyl-tRNA SynthetasesBase SequenceCodonEscherichia coliEvolution, MolecularGenetic EngineeringKineticsMethanobacteriaceaeModels, MolecularMolecular ConformationMolecular Sequence DataNucleic Acid ConformationPhylogenyProtein Structure, SecondarySequence Homology, Amino AcidConceptsGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesGenetic code engineeringAmino acidsDomains of lifeMost aminoacyl-tRNA synthetasesGlutamyl-tRNA synthetaseCanonical amino acidsBacterial GlnRSTRNA specificityTRNA pairsParticular codonsEvolutionary precursorBiochemical characterizationStem loopGlnRAdditional codonsCAA codonCodonProtein synthesisCAG codonEscherichia coliSpecific enzymesCatalytic preferenceSynthetase
2001
A dual‐specific Glu‐tRNAGln and Asp‐tRNAAsn amidotransferase is involved in decoding glutamine and asparagine codons in Acidithiobacillus ferrooxidans
Salazar J, Zúñiga R, Raczniak G, Becker H, Söll D, Orellana O. A dual‐specific Glu‐tRNAGln and Asp‐tRNAAsn amidotransferase is involved in decoding glutamine and asparagine codons in Acidithiobacillus ferrooxidans. FEBS Letters 2001, 500: 129-131. PMID: 11445070, DOI: 10.1016/s0014-5793(01)02600-x.Peer-Reviewed Original ResearchConceptsOperon-like structureGlutaminyl-tRNA synthetaseGlutamyl-tRNA synthetaseA. ferrooxidansAsparaginyl-tRNA synthetaseTransamidation pathwayGat genesGlu-tRNAGlnBioleaching of mineralsAsn-tRNAAcidithiobacillus ferrooxidansGln-tRNAAsparagine codonsSynthetase enzymeBacillus subtilisAcidophilic bacteriumEscherichia coliBiochemical analysisAmidotransferaseSynthetaseGenes
2000
A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia
Bunjun S, Stathopoulos C, Graham D, Min B, Kitabatake M, Wang A, Wang C, Vivarès C, Weiss L, Söll D. A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 12997-13002. PMID: 11078517, PMCID: PMC27167, DOI: 10.1073/pnas.230444397.Peer-Reviewed Original ResearchConceptsCys-tRNAAminoacyl-tRNA synthetaseProlyl-tRNA synthetasePrimitive eukaryote Giardia lambliaPro geneEukaryote Giardia lambliaNumber of archaeaAlanyl-tRNA synthetasesCysteinyl-tRNA synthetaseE. coli tRNACysS genesM. jannaschiiMethanococcus jannaschiiMost organismsGenomic sequencesSaccharomyces cerevisiaeCysteinyl-tRNAGene productsPro-tRNATRNA synthetaseDual specificityMethanobacterium thermoautotrophicumProtein synthesisEscherichia coliAmino acidsThe heterotrimeric Thermus thermophilus Asp‐tRNAAsn amidotransferase can also generate Gln‐tRNAGln
Becker H, Min B, Jacobi C, Raczniak G, Pelaschier J, Roy H, Klein S, Kern D, Söll D. The heterotrimeric Thermus thermophilus Asp‐tRNAAsn amidotransferase can also generate Gln‐tRNAGln. FEBS Letters 2000, 476: 140-144. PMID: 10913601, DOI: 10.1016/s0014-5793(00)01697-5.Peer-Reviewed Original Research
1998
Maize mitochondrial seryl-tRNA synthetase recognizes Escherichia coli tRNASer in vivo and in vitro
Rokov J, Söll D, Weygand-Durašević I. Maize mitochondrial seryl-tRNA synthetase recognizes Escherichia coli tRNASer in vivo and in vitro. Plant Molecular Biology 1998, 38: 497-502. PMID: 9747857, DOI: 10.1023/a:1006088516228.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseMitochondrial seryl-tRNA synthetasePutative mature proteinSeryl-tRNA synthetasesEscherichia coliStructure/function relationshipsMature proteinGene sequencesMutant strainSignificant similarityFunctional identityN-terminalYeast tRNAMitochondrial functionFunction relationshipsProteinPoor substrateSynthetaseColiSynthetasesTRNAVivoCDNAMaizeEnzyme
1997
Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi
Ibba M, Bono J, Rosa P, Söll D. Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 14383-14388. PMID: 9405621, PMCID: PMC24988, DOI: 10.1073/pnas.94.26.14383.Peer-Reviewed Original ResearchConceptsLysyl-tRNA synthetasesLysyl-tRNA synthetaseOpen reading frameReading frameAminoacyl-tRNA synthetasesLyme disease spirochete Borrelia burgdorferiGroup of enzymesLysyl-tRNA synthetase activityAmino acid levelsBacterial pathogen Borrelia burgdorferiArchaeal kingdomHeterologous expressionProtein biosynthesisGenomic sequencesMRNA translationPathogen Borrelia burgdorferiSignificant similarityLysyl-tRNASynthetasesB. burgdorferiBorrelia burgdorferiEscherichia coliEukaryaSpirochete Borrelia burgdorferiPathogenic spirochetes
1996
Escherichia coli Tryptophanyl-tRNA Synthetase Mutants Selected for Tryptophan Auxotrophy Implicate the Dimer Interface in Optimizing Amino Acid Binding †
Sever S, Rogers K, Rogers M, Carter C, Söll D. Escherichia coli Tryptophanyl-tRNA Synthetase Mutants Selected for Tryptophan Auxotrophy Implicate the Dimer Interface in Optimizing Amino Acid Binding †. Biochemistry 1996, 35: 32-40. PMID: 8555191, DOI: 10.1021/bi952103d.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBacillus subtilisBase SequenceBinding SitesCloning, MolecularDNA PrimersEscherichia coliGenes, BacterialGeobacillus stearothermophilusHaemophilus influenzaeKineticsMacromolecular SubstancesModels, MolecularMolecular Sequence DataPolymerase Chain ReactionProtein FoldingProtein Structure, SecondaryRecombinant ProteinsRestriction MappingSequence Homology, Amino AcidTryptophanTryptophan-tRNA LigaseConceptsTryptophanyl-tRNA synthetaseDimer interfaceClass I aminoacyl-tRNA synthetasesAminoacyl-tRNA synthetasesAmino acid bindingAmino acid activationActive siteSteady-state kinetic analysisSynthetase mutantsRossmann foldApparent KmKMSKS loopTrp lociProtein structureTrpR proteinTryptophan auxotrophDimeric enzymeAuxotrophic strainsBacillus stearothermophilusAcid bindingEscherichia coliOptimal catalysisAminoacyl adenylatesMutantsMutations
1995
Aminoacylation of transfer RNAs with 2-thiouridine derivatives in the wobble position of the anticodon
Rogers K, Crescenzo A, Söll D. Aminoacylation of transfer RNAs with 2-thiouridine derivatives in the wobble position of the anticodon. Biochimie 1995, 77: 66-74. PMID: 7541255, DOI: 10.1016/0300-9084(96)88106-5.Peer-Reviewed Original ResearchConceptsEvolution of specificityPost-transcriptional modificationsAnticodon of tRNAAminoacyl-tRNA synthetasesTranslational regulationTransfer RNAWobble positionWobble baseLysine tRNATRNAEscherichia coliAnticodonAminoacylationFirst positionSynthetasesRNAColiRegulationGlutamineModificationDiscoveryGlutamate
1994
Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases.
Frugier M, Söll D, Giegé R, Florentz C. Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases. Biochemistry 1994, 33: 9912-21. PMID: 8060999, DOI: 10.1021/bi00199a013.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthetasesIdentity nucleotidesHigh-resolution X-ray structuresAminoacyl-tRNA synthetase complexGlutaminyl-tRNA synthetaseAspartyl-tRNA synthetasesAspartyl-tRNA synthetaseGlutamine identityCognate tRNATRNA structureTRNA moleculesTRNAAminoacylation specificitySynthetase complexSpecific aminoacylationConformational changesSynthetasesEscherichia coliYeastSynthetaseNucleotidesE. coliX-ray structureComplex formationColiThiobacillus ferrooxidans tyrosyl-tRNA synthetase functions in vivo in Escherichia coli
Salazar O, Sagredo B, Jedlicki E, Söll D, Weygand-Durasevic I, Orellana O. Thiobacillus ferrooxidans tyrosyl-tRNA synthetase functions in vivo in Escherichia coli. Journal Of Bacteriology 1994, 176: 4409-4415. PMID: 7517395, PMCID: PMC205654, DOI: 10.1128/jb.176.14.4409-4415.1994.Peer-Reviewed Original ResearchMeSH KeywordsAcidithiobacillus thiooxidansAmino Acid SequenceBase SequenceGene Expression Regulation, BacterialGenes, BacterialGenetic Complementation TestMolecular Sequence DataMutationNucleic Acid HybridizationOperonPromoter Regions, GeneticRNA, BacterialRNA, RibosomalRNA, Transfer, TyrSequence Analysis, DNATyrosine-tRNA LigaseConceptsOverall identityTyrosyl-tRNA synthetase geneRho-independent transcription terminatorEscherichia coli TyrRSClass I aminoacyl-tRNA synthetasesRibosomal RNA operonSingle-copy geneAminoacyl-tRNA synthetasesTyrosyl-tRNA synthetasesSouthern blot analysisRNA operonBioleaching of mineralsThermosensitive mutationTranscription unitTranscription terminatorSynthetase genePutative promoterProtein sequencesSynthetase functionE. coli strainsGenesSignature sequencesEscherichia coliAmino acidsDNA probesCoexpression of eukaryotic tRNASer and yeast seryl-tRNA synthetase leads to functional amber suppression in Escherichia coli
Weygand-Durasević I, Nalaskowska M, Söll D. Coexpression of eukaryotic tRNASer and yeast seryl-tRNA synthetase leads to functional amber suppression in Escherichia coli. Journal Of Bacteriology 1994, 176: 232-239. PMID: 8282701, PMCID: PMC205035, DOI: 10.1128/jb.176.1.232-239.1994.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast seryl-tRNA synthetaseEscherichia coliSerine tRNA geneE. coliConservation of determinantsTRNA genesSchizosaccharomyces pombePrimary transcriptPlasmid promoterAmber suppressionTRNA identityFunctional expressionColiCoexpressionSynthetasePombeGenesPromoterSuppressorTranscriptsOrganismsConservationExpressionEfficient suppression
1993
Yeast seryl‐tRNA synthetase expressed in Escherichia coli recognizes bacterial serine‐specific tRNAs in vivo
WEYGAND‐DURAŠEVIĆ I, Nenad B, Dieter J, Dieter S. Yeast seryl‐tRNA synthetase expressed in Escherichia coli recognizes bacterial serine‐specific tRNAs in vivo. The FEBS Journal 1993, 214: 869-877. PMID: 7686490, DOI: 10.1111/j.1432-1033.1993.tb17990.x.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast SerRSYeast seryl-tRNA synthetaseEscherichia coliE. coli tRNAVivo complementationProkaryotic hostsTwo-step purificationSer geneHomologous tRNAsNonpermissive temperatureSer mutantE. coli strainsTRNAE. coliColi strainsColiSynthetaseSerRSVivoComplementationMutantsSaccharomycesGenesPromoterThe periplasmic dipeptide permease system transports 5-aminolevulinic acid in Escherichia coli
Verkamp E, Backman V, Björnsson J, Söll D, Eggertsson G. The periplasmic dipeptide permease system transports 5-aminolevulinic acid in Escherichia coli. Journal Of Bacteriology 1993, 175: 1452-1456. PMID: 8444807, PMCID: PMC193232, DOI: 10.1128/jb.175.5.1452-1456.1993.Peer-Reviewed Original ResearchConceptsDpp operonE. coli chromosomeEscherichia coliWild-type growthClasses of mutantsAbsence of ALAGenetic screenDpp mutationsColi chromosomeDpp transportALA biosynthesisFirst geneDipeptide transport systemAnaerobic growthChromosomal insertionOperonRecombinant plasmidTransport systemExogenous ALAALA uptakeE. coliNormal growthMutantsMutationsColi
1992
Recognition of bases in Escherichia coli tRNA(Gln) by glutaminyl‐tRNA synthetase: a complete identity set.
Hayase Y, Jahn M, Rogers M, Sylvers L, Koizumi M, Inoue H, Ohtsuka E, Söll D. Recognition of bases in Escherichia coli tRNA(Gln) by glutaminyl‐tRNA synthetase: a complete identity set. The EMBO Journal 1992, 11: 4159-4165. PMID: 1396597, PMCID: PMC556926, DOI: 10.1002/j.1460-2075.1992.tb05509.x.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseRecognition of basesSet of tRNAsEscherichia coliCognate aminoacyl-tRNA synthetasesAminoacyl-tRNA synthetasesCorrect aminoacylationRecombinant RNA technologySet of nucleotidesNumber of mutantsGlutamine identityTRNA genesTRNA discriminationTransfer RNAExcellent systemGlnRFunctional importanceSingle deletionSpecific contactsRNA technologyBase changesSpecificity constantAminoacylationSpecific guanosineMutantsGlutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression.
Verkamp E, Jahn M, Jahn D, Kumar A, Söll D. Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression. Journal Of Biological Chemistry 1992, 267: 8275-8280. PMID: 1569081, DOI: 10.1016/s0021-9258(18)42438-6.Peer-Reviewed Original ResearchMeSH KeywordsAldehyde OxidoreductasesAmino Acid SequenceBase SequenceChromatography, GelCyanobacteriaEscherichia coliGene ExpressionGenes, BacterialGenes, FungalGenetic Complementation TestMolecular Sequence DataOpen Reading FramesPlasmidsRestriction MappingSaccharomyces cerevisiaeSequence Homology, Nucleic AcidConceptsGlutamyl-tRNA reductaseHemA geneAmino acid sequenceHemA proteinGluTR activitySynechocystis 6803Acid sequenceE. coliGlutamate-1-semialdehyde aminotransferaseHemA gene productEscherichia coliCyanobacterium Synechocystis spOpen reading frameEnterobacterium Escherichia coliDNA sequence analysisFunctional complementationGene structureGlu-tRNAGel filtration experimentsPCC 6803Synechocystis spGlutamyl-tRNAAcid polypeptideReading frameALA formation
1991
Anticodon and acceptor stem nucleotides in tRNAGln are major recognition elements for E. coli glutaminyl-tRNA synthetase
Jahn M, Rogers M, Söll D. Anticodon and acceptor stem nucleotides in tRNAGln are major recognition elements for E. coli glutaminyl-tRNA synthetase. Nature 1991, 352: 258-260. PMID: 1857423, DOI: 10.1038/352258a0.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseMutant tRNAsE. coli glutaminyl-tRNA synthetaseEfficient amber suppressorsAminoacyl-tRNA synthetasesCorresponding transfer RNASet of nucleotidesMajor recognition elementGlutamine identityAcceptor stem regionTRNA discriminationTransfer RNAAmber suppressorProtein biosynthesisTRNA moleculesUnmodified tRNACorrect attachmentAnticodon regionTRNAAcceptor stemSimilar kinetic parametersEscherichia coliAmino acidsDifferent synthetasesSpecificity constantThe Escherichia coli hemL gene encodes glutamate 1-semialdehyde aminotransferase
Ilag L, Jahn D, Eggertsson G, Söll D. The Escherichia coli hemL gene encodes glutamate 1-semialdehyde aminotransferase. Journal Of Bacteriology 1991, 173: 3408-3413. PMID: 2045363, PMCID: PMC207952, DOI: 10.1128/jb.173.11.3408-3413.1991.Peer-Reviewed Original ResearchMeSH KeywordsAminolevulinic AcidCentrifugation, Density GradientChromatography, High Pressure LiquidCloning, MolecularDose-Response Relationship, DrugElectrophoresis, Polyacrylamide GelEscherichia coliIntramolecular TransferasesIsomerasesMolecular WeightPyridoxal PhosphatePyridoxamineTransformation, GeneticConceptsGlu-tRNA reductaseTRNA-dependent transformationApparent native molecular massMolecular massGlutamyl-tRNA synthetaseNative molecular massAminoglycoside antibiotic kanamycinHemL geneWild-type DNAAuxotrophic phenotypeC5 pathwaySodium dodecyl sulfate-polyacrylamide gel electrophoresisDodecyl sulfate-polyacrylamide gel electrophoresisMap positionGSA aminotransferasePhysical mappingSulfate-polyacrylamide gel electrophoresisRate zonal sedimentationGene productsThird enzymeGlycerol gradientsApparent homogeneityAntibiotic kanamycinEscherichia coliPure proteinTwo glutamyl-tRNA reductase activities in Escherichia coli
Jahn D, Michelsen U, Söll D. Two glutamyl-tRNA reductase activities in Escherichia coli. Journal Of Biological Chemistry 1991, 266: 2542-2548. PMID: 1990004, DOI: 10.1016/s0021-9258(18)52279-1.Peer-Reviewed Original ResearchConceptsReductase activityGlu-tRNA reductaseMolecular massEscherichia coliApparent molecular massDifferent chromatographic separationsSequence-specific recognitionGlycerol gradient centrifugationThree-step conversionTetrapyrrole biosynthesisChlamydomonas reinhardtiiE. coli K12ALA formationChromatographic separationKey enzymeMonomeric structureActive enzymeBacillus subtilisColi K12Nondenaturing conditionsHomogeneous proteinMolecular weightDelta-aminolevulinic acidEnzyme activityAddition of GTPdelta-Aminolevulinic acid dehydratase deficiency can cause delta-aminolevulinate auxotrophy in Escherichia coli
O'Neill G, Thorbjarnardóttir S, Michelsen U, Pálsson S, Söll D, Eggertsson G. delta-Aminolevulinic acid dehydratase deficiency can cause delta-aminolevulinate auxotrophy in Escherichia coli. Journal Of Bacteriology 1991, 173: 94-100. PMID: 1987138, PMCID: PMC207161, DOI: 10.1128/jb.173.1.94-100.1991.Peer-Reviewed Original ResearchConceptsALA dehydratase activityEscherichia coliWild-type geneClasses of mutantsDNA sequence analysisAminoglycoside antibiotic kanamycinHeme biosynthetic pathwayALA biosynthesisWild-type DNAAuxotrophic phenotypeComplementation studiesDehydratase activityHemB geneBiosynthetic pathwayPositive regulationALA formationSame geneMutantsPenicillin enrichmentSequence analysisGenesAntibiotic kanamycinDiffusible productHemB mutantEnzymatic activity