2006
Structure of the unusual seryl‐tRNA synthetase reveals a distinct zinc‐dependent mode of substrate recognition
Bilokapic S, Maier T, Ahel D, Gruic‐Sovulj I, Söll D, Weygand‐Durasevic I, Ban N. Structure of the unusual seryl‐tRNA synthetase reveals a distinct zinc‐dependent mode of substrate recognition. The EMBO Journal 2006, 25: 2498-2509. PMID: 16675947, PMCID: PMC1478180, DOI: 10.1038/sj.emboj.7601129.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid SequenceAnimalsArchaeal ProteinsBinding SitesCrystallography, X-RayDimerizationEnzyme ActivationHumansMethanosarcina barkeriModels, MolecularMolecular Sequence DataMolecular StructureProtein Structure, QuaternarySequence AlignmentSequence Homology, Amino AcidSerineSerine-tRNA LigaseSubstrate SpecificityThreonineConceptsSeryl-tRNA synthetaseTRNA-binding domainMinimal sequence similarityResolution crystal structureAmino acid substratesActive site zinc ionSequence similaritySubstrate recognitionSerRSsSerine substrateMotif 1Methanogenic archaeaMutational analysisProtein ligandsEnzymatic activityArchaeaAminoacyl-tRNA synthetase systemsDistinct mechanismsAbsolute requirementRecognition mechanismSynthetase systemSynthetaseIon ligandsZinc ionsEucaryotes
1996
Homologous Expression and Purification of Mutants of an Essential Protein by Reverse Epitope-Tagging
Thomann H, Ibba M, Hong K, Söll D. Homologous Expression and Purification of Mutants of an Essential Protein by Reverse Epitope-Tagging. Bio/Technology 1996, 14: 50-55. PMID: 9636312, DOI: 10.1038/nbt0196-50.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseMutant enzymesEssential enzymeGlutaminyl-tRNA synthetasesWild-type proteinExtrachromosomal genetic elementsEpitope taggingEssential proteinsMutant proteinsHomologous expressionReporter epitopeCell-free extractsGenetic elementsNormal phenotypeBiochemical studiesEnzymatic activityEnzymeProteinSynthetaseProtein contaminationExpressionPurificationMutantsSynthetasesNovel strategy
1993
Selection of a ‘minimal’ glutaminyl‐tRNA synthetase and the evolution of class I synthetases.
Schwob E, Söll D. Selection of a ‘minimal’ glutaminyl‐tRNA synthetase and the evolution of class I synthetases. The EMBO Journal 1993, 12: 5201-5208. PMID: 7505222, PMCID: PMC413784, DOI: 10.1002/j.1460-2075.1993.tb06215.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBacterial ProteinsBase SequenceBinding SitesBiological EvolutionEscherichia coliModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedProtein Structure, TertiaryRNA, BacterialRNA, Transfer, GlnRNA, Transfer, SerStructure-Activity RelationshipTransfer RNA AminoacylationConceptsGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesEscherichia coli glutaminyl-tRNA synthetaseClass I aminoacyl-tRNA synthetasesNew recognition specificitiesNon-catalytic domainSubstrate recognition propertiesNon-cognate tRNAsRecognition of tRNACommon ancestorSequence motifsAmber suppressorGenetic codeTRNA substratesCatalytic coreGlnRTRNARecognition specificityDistinct domainsEnzymatic activityElaborate relationshipSynthetasesSpecific roleClass ISynthetase
1991
Histidine tRNA guanylyltransferase from Saccharomyces cerevisiae. I. Purification and physical properties.
Pande S, Jahn D, Söll D. Histidine tRNA guanylyltransferase from Saccharomyces cerevisiae. I. Purification and physical properties. Journal Of Biological Chemistry 1991, 266: 22826-22831. PMID: 1660461, DOI: 10.1016/s0021-9258(18)54428-8.Peer-Reviewed Original ResearchConceptsAdditional nucleotidesHistidine tRNA genesPolymin P precipitationTRNA genesSodium dodecyl sulfate-polyacrylamide gel electrophoresisDodecyl sulfate-polyacrylamide gel electrophoresisTRNA speciesSulfate-polyacrylamide gel electrophoresisRate zonal sedimentationHomodimeric structureGuanylyltransferaseRelative molecular weightTRNAATP-agaroseGel filtrationAbolishes activityHistidine tRNANative enzymeGuanosine residuesAcceptor RNAEnzymatic activityUnfractionated tRNAGuanosine substrateZonal sedimentationGel electrophoresisdelta-Aminolevulinic acid dehydratase deficiency can cause delta-aminolevulinate auxotrophy in Escherichia coli
O'Neill G, Thorbjarnardóttir S, Michelsen U, Pálsson S, Söll D, Eggertsson G. delta-Aminolevulinic acid dehydratase deficiency can cause delta-aminolevulinate auxotrophy in Escherichia coli. Journal Of Bacteriology 1991, 173: 94-100. PMID: 1987138, PMCID: PMC207161, DOI: 10.1128/jb.173.1.94-100.1991.Peer-Reviewed Original ResearchConceptsALA dehydratase activityEscherichia coliWild-type geneClasses of mutantsDNA sequence analysisAminoglycoside antibiotic kanamycinHeme biosynthetic pathwayALA biosynthesisWild-type DNAAuxotrophic phenotypeComplementation studiesDehydratase activityHemB geneBiosynthetic pathwayPositive regulationALA formationSame geneMutantsPenicillin enrichmentSequence analysisGenesAntibiotic kanamycinDiffusible productHemB mutantEnzymatic activity