2012
The Mechanism of Pre-transfer Editing in Yeast Mitochondrial Threonyl-tRNA Synthetase*
Ling J, Peterson KM, Simonović I, Söll D, Simonović M. The Mechanism of Pre-transfer Editing in Yeast Mitochondrial Threonyl-tRNA Synthetase*. Journal Of Biological Chemistry 2012, 287: 28518-28525. PMID: 22773845, PMCID: PMC3436575, DOI: 10.1074/jbc.m112.372920.Peer-Reviewed Original ResearchConceptsPre-transfer editingThreonyl-tRNA synthetaseHydrolytic water moleculeFundamental biological processesNormal cellular functionAminoacyl-tRNA synthetasesPost-transfer editingPost-transfer editing activityTranslational fidelityAminoacylation siteCellular functionsAminoacylation active siteBiological processesMST1Conformational changesEditing activitySeryl adenylateAmino acidsSpecialized domainsEditingSerineSites 100SynthetaseActive siteAdenylate
2009
The Human SepSecS-tRNASec Complex Reveals the Mechanism of Selenocysteine Formation
Palioura S, Sherrer RL, Steitz TA, Söll D, Simonović M. The Human SepSecS-tRNASec Complex Reveals the Mechanism of Selenocysteine Formation. Science 2009, 325: 321-325. PMID: 19608919, PMCID: PMC2857584, DOI: 10.1126/science.1173755.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceBiocatalysisCatalytic DomainCrystallography, X-RayHumansHydrogen BondingModels, MolecularMolecular Sequence DataNucleic Acid ConformationPhosphatesPhosphoserineProtein ConformationProtein MultimerizationProtein Structure, SecondaryRNA, Transfer, Amino Acid-SpecificRNA, Transfer, Amino AcylSelenocysteineConceptsTransfer RNASelenocysteine formationSelenocysteinyl-tRNA synthaseCognate transfer RNAEnzyme active siteTRNA bindingActive siteConformational changesEnzyme assaysAmino acidsFree phosphoserinePhosphoserineSepSecSFinal stepSelenocysteineBiosynthesisComplexesRNAMechanismBindsCrystal structureSynthaseBindingFormationAssays
2002
tRNA‐dependent amino acid discrimination by yeast seryl‐tRNA synthetase
Gruic‐Sovulj I, Landeka I, Söll D, Weygand‐Durasevic I. tRNA‐dependent amino acid discrimination by yeast seryl‐tRNA synthetase. The FEBS Journal 2002, 269: 5271-5279. PMID: 12392560, DOI: 10.1046/j.1432-1033.2002.03241.x.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast seryl-tRNA synthetaseCognate tRNA moleculesAmino acid discriminationAminoacyl-tRNA synthetasesAmino acid substratesSimilar amino acidsAmino acid serineGenetic codeEnzyme active siteTRNA moleculesActive siteYeast SerRSConformational changesAcid substratesAmino acidsSerineSynthetaseStoichiometric analysisDifferent affinitiesEnzymeAccurate translationTRNASerSynthetasesSaccharomyces
1997
Defining the Active Site of Yeast Seryl-tRNA Synthetase MUTATIONS IN MOTIF 2 LOOP RESIDUES AFFECT tRNA-DEPENDENT AMINO ACID RECOGNITION*
Lenhard B, Filipić S, Landeka I, Škrtić I, Söll D, Weygand-Durašević I. Defining the Active Site of Yeast Seryl-tRNA Synthetase MUTATIONS IN MOTIF 2 LOOP RESIDUES AFFECT tRNA-DEPENDENT AMINO ACID RECOGNITION*. Journal Of Biological Chemistry 1997, 272: 1136-1141. PMID: 8995413, DOI: 10.1074/jbc.272.2.1136.Peer-Reviewed Original ResearchConceptsMotif 2 loopAmino acid recognitionSeryl-tRNA synthetaseClass II aminoacyl-tRNA synthetasesSeryl-tRNA synthetasesYeast seryl-tRNA synthetaseAmino acidsLoss of complementationAminoacyl-tRNA synthetasesActive sitePresence of tRNASteady-state kinetic analysisProkaryotic counterpartsYeast enzymeElevated Km valuesNull allelesConformational changesTRNAAcceptor endSynthetasesGenesATPStructural dataStructural studiesSerine
1994
Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases.
Frugier M, Söll D, Giegé R, Florentz C. Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases. Biochemistry 1994, 33: 9912-21. PMID: 8060999, DOI: 10.1021/bi00199a013.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthetasesIdentity nucleotidesHigh-resolution X-ray structuresAminoacyl-tRNA synthetase complexGlutaminyl-tRNA synthetaseAspartyl-tRNA synthetasesAspartyl-tRNA synthetaseGlutamine identityCognate tRNATRNA structureTRNA moleculesTRNAAminoacylation specificitySynthetase complexSpecific aminoacylationConformational changesSynthetasesEscherichia coliYeastSynthetaseNucleotidesE. coliX-ray structureComplex formationColiConnecting Anticodon Recognition with the Active Site of Escherichia coli Glutaminyl-tRNA Synthetase
Weygand-Duraševic I, Rogers M, Söll D. Connecting Anticodon Recognition with the Active Site of Escherichia coli Glutaminyl-tRNA Synthetase. Journal Of Molecular Biology 1994, 240: 111-118. PMID: 8027995, DOI: 10.1006/jmbi.1994.1425.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseAnticodon recognitionMutant enzymesEscherichia coli glutaminyl-tRNA synthetaseOpal suppressor tRNASpecificity constantMutant gene productsWild-type enzymeAmino acid loopExtensive conformational changesActive siteNumber of mutationsSuppressor tRNAGene productsGlnRPathways of communicationSaturation mutagenesisTRNAAcceptor stemAcid loopGenetic selectionConformational changesAnticodonPoor substrateAminoacylation
1992
Aminoacyl-tRNA synthetase-induced cleavage of tRNA
Beresten S, Jahn M, Söll D. Aminoacyl-tRNA synthetase-induced cleavage of tRNA. Nucleic Acids Research 1992, 20: 1523-1530. PMID: 1579445, PMCID: PMC312233, DOI: 10.1093/nar/20.7.1523.Peer-Reviewed Original Research