2024
Validation of an Electronic Health Record–Based Machine Learning Model Compared With Clinical Risk Scores for Gastrointestinal Bleeding
Shung D, Chan C, You K, Nakamura S, Saarinen T, Zheng N, Simonov M, Li D, Tsay C, Kawamura Y, Shen M, Hsiao A, Sekhon J, Laine L. Validation of an Electronic Health Record–Based Machine Learning Model Compared With Clinical Risk Scores for Gastrointestinal Bleeding. Gastroenterology 2024, 167: 1198-1212. PMID: 38971198, PMCID: PMC11493512, DOI: 10.1053/j.gastro.2024.06.030.Peer-Reviewed Original ResearchElectronic health recordsGlasgow-Blatchford scoreEmergency departmentVery-low-risk patientsRisk scoreOakland scoreMachine learning modelsStructured data fieldsClinical risk scoreGastrointestinal bleedingAll-cause mortalityHealth recordsLearning modelsManual data entrySecondary analysisRisk stratification scoresAssess proportionRed blood-cell transfusionPrimary outcomeProportion of patientsData entryOvert gastrointestinal bleedingPrimary analysisReceiver-operating-characteristic curveVery-low-risk
2023
Sex, Race, and Ethnicity Differences in Patients Presenting With Diverticular Disease at Emergency Departments in the United States: A National Cross-Sectional Study
Zheng N, Ma W, Shung D, Strate L, Chan A. Sex, Race, and Ethnicity Differences in Patients Presenting With Diverticular Disease at Emergency Departments in the United States: A National Cross-Sectional Study. Gastro Hep Advances 2023, 3: 178-180. PMID: 39129950, PMCID: PMC11307830, DOI: 10.1016/j.gastha.2023.11.012.Peer-Reviewed Original ResearchAchieving Value by Risk Stratification With Machine Learning Model or Clinical Risk Score in Acute Upper Gastrointestinal Bleeding: A Cost Minimization Analysis
Shung D, Lin J, Laine L. Achieving Value by Risk Stratification With Machine Learning Model or Clinical Risk Score in Acute Upper Gastrointestinal Bleeding: A Cost Minimization Analysis. The American Journal Of Gastroenterology 2023, 119: 371-373. PMID: 37753930, PMCID: PMC10872988, DOI: 10.14309/ajg.0000000000002520.Peer-Reviewed Original ResearchUpper gastrointestinal bleedingCost-minimization analysisGastrointestinal bleedingUsual careTriage strategiesAcute upper gastrointestinal bleedingClinical risk scoreLow-risk patientsHealthcare payer perspectiveMinimization analysisRisk assessment toolRisk stratificationEmergency departmentPayer perspectiveRisk scoreBleedingAssessment toolCareRisk assessment modelMachine-learning strategiesPatientsCumulative savings
2019
Validation of a Machine Learning Model That Outperforms Clinical Risk Scoring Systems for Upper Gastrointestinal Bleeding
Shung DL, Au B, Taylor RA, Tay JK, Laursen SB, Stanley AJ, Dalton HR, Ngu J, Schultz M, Laine L. Validation of a Machine Learning Model That Outperforms Clinical Risk Scoring Systems for Upper Gastrointestinal Bleeding. Gastroenterology 2019, 158: 160-167. PMID: 31562847, PMCID: PMC7004228, DOI: 10.1053/j.gastro.2019.09.009.Peer-Reviewed Original ResearchConceptsUpper gastrointestinal bleedingHospital-based interventionsComposite endpointScoring systemRockall scoreGastrointestinal bleedingClinical riskConsecutive unselected patientsLow-risk patientsClinical scoring systemRisk-scoring systemExternal validation cohortCharacteristic curve analysisInternal validation setOutpatient managementUnselected patientsValidation cohortEmergency departmentMedical CenterGreater AUCPatientsAbstractTextCurve analysisEndpointAUC