2015
Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes
Hu J, Zhang Y, Zhao L, Frock RL, Du Z, Meyers RM, Meng FL, Schatz DG, Alt FW. Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes. Cell 2015, 163: 947-959. PMID: 26593423, PMCID: PMC4660266, DOI: 10.1016/j.cell.2015.10.016.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCCCTC-Binding FactorChromosomes, MammalianDNA-Binding ProteinsGenes, mycGenomeHigh-Throughput Nucleotide SequencingHomeodomain ProteinsHumansImmunoglobulin Heavy ChainsLymphomaMiceNucleotide MotifsRegulatory Sequences, Nucleic AcidRepressor ProteinsSequence Analysis, DNATranslocation, GeneticV(D)J RecombinationConceptsRecombination signal sequencesRSS pairAntigen receptor genesSignal sequenceRAG activityDNA breaksChromosomal loopsLoop domainBiological processesConvergent CTCFChromosomal translocationsCleavage siteReceptor geneTarget activitySuch breaksMarked orientation dependenceRecombinationRAGCTCFChromatinMegabasesOff-target distributionGenesBreaksDomainRAG Represents a Widespread Threat to the Lymphocyte Genome
Teng G, Maman Y, Resch W, Kim M, Yamane A, Qian J, Kieffer-Kwon KR, Mandal M, Ji Y, Meffre E, Clark MR, Cowell LG, Casellas R, Schatz DG. RAG Represents a Widespread Threat to the Lymphocyte Genome. Cell 2015, 162: 751-765. PMID: 26234156, PMCID: PMC4537821, DOI: 10.1016/j.cell.2015.07.009.Peer-Reviewed Original ResearchConceptsRecombination signalsStrong recombination signalGenome stabilityHuman genomeActive promotersGenomeDNA damageChromosomal translocationsCleavage siteWidespread threatRAG1Lymphocyte genomeEvolutionary struggleRecombinationRAGChromatinPromoterEndonucleaseSitesRAG2TranslocationAbundanceDepletionEnhancerHeptamerChapter 2 The Mechanism of V(D)J Recombination
Little A, Matthews A, Oettinger M, Roth D, Schatz D. Chapter 2 The Mechanism of V(D)J Recombination. 2015, 13-34. DOI: 10.1016/b978-0-12-397933-9.00002-3.ChaptersLymphocyte developmentNonhomologous end-joining pathwayRegulation of recombinationAntigen receptor lociEnd-joining pathwayDNA repair proteinsRecombination-activating gene 1RAG proteinsDNA breaksRecombinase machineryFunctional antigen receptorEnd processingReceptor locusGenetic instabilityGene 1Recombinase activityChromosomal translocationsDNA cleavageProtein 1Diverse repertoireRepair stepsBox protein 1Antigen receptorHigh mobility group box protein 1Recombination
2006
Mobilization of RAG-Generated Signal Ends by Transposition and Insertion In Vivo
Chatterji M, Tsai CL, Schatz DG. Mobilization of RAG-Generated Signal Ends by Transposition and Insertion In Vivo. Molecular And Cellular Biology 2006, 26: 1558-1568. PMID: 16449665, PMCID: PMC1367191, DOI: 10.1128/mcb.26.4.1558-1568.2006.Peer-Reviewed Original ResearchConceptsRAG proteinsVertebrate cellsTransposition eventsEnd fragmentsFull-length RAG2Embryonic kidney cell lineHuman embryonic kidney cell lineTarget site duplicationsGenome instabilityHuman genomeSignal endsKidney cell lineGenomic instabilityTranslocation eventsSite duplicationsChromosomal translocationsDNA cleavageComplex rearrangementsChromosome deletionsEssential roleProteinCell linesEpisomesDeletionAssays
2004
Identification of an AID-independent pathway for chromosomal translocations between the Igh switch region and Myc
Unniraman S, Zhou S, Schatz DG. Identification of an AID-independent pathway for chromosomal translocations between the Igh switch region and Myc. Nature Immunology 2004, 5: 1117-1123. PMID: 15489857, DOI: 10.1038/ni1127.Peer-Reviewed Original ResearchConceptsActivation-induced cytidine deaminaseB-cell malignanciesTranslocation-positive cellsChromosomal translocationsIgh switch regionsNew concepts in the regulation of an ancient reaction: transposition by RAG1/RAG2
Chatterji M, Tsai C, Schatz DG. New concepts in the regulation of an ancient reaction: transposition by RAG1/RAG2. Immunological Reviews 2004, 200: 261-271. PMID: 15242411, DOI: 10.1111/j.0105-2896.2004.00167.x.Peer-Reviewed Original ResearchConceptsRAG proteinsRecombination-activating gene 1Transposition activityAntigen receptor lociDNA double-stand breaksRAG1/RAG2Lymphoid-specific factorsDouble-stand breaksEndonuclease activityGene 1Chromosomal translocationsVariety of mechanismsProteinSpecific sitesRAG2Ancient reactionRecombinationRecent studiesGenome
2003
Regulation of RAG1/RAG2‐mediated transposition by GTP and the C‐terminal region of RAG2
Tsai C, Schatz DG. Regulation of RAG1/RAG2‐mediated transposition by GTP and the C‐terminal region of RAG2. The EMBO Journal 2003, 22: 1922-1930. PMID: 12682024, PMCID: PMC154477, DOI: 10.1093/emboj/cdg185.Peer-Reviewed Original ResearchConceptsFull-length RAG2RAG2 proteinsRegulatory mechanismsC-terminal regionRAG proteinsHybrid joint formationDNA recognitionDNA transpositionCleavage functionChromosomal translocationsGTPUnknown mechanismRAG2ProteinTarget DNAPhysiological concentrationsRegulationJoint formationRAGRAG1MechanismTranslocationDNAGuanineTransposition
2000
Cell-cycle-regulated DNA double-strand breaks in somatic hypermutation of immunoglobulin genes
Papavasiliou F, Schatz D. Cell-cycle-regulated DNA double-strand breaks in somatic hypermutation of immunoglobulin genes. Nature 2000, 408: 216-221. PMID: 11089977, DOI: 10.1038/35041599.Peer-Reviewed Original ResearchConceptsDNA double-strand breaksDouble-strand breaksSomatic hypermutationRepair of DSBsVariable region promotersImmunoglobulin variable region genesDNA replicationHomologous recombinationHeterologous promoterSpecific residuesVariable genesNearby mutationsRegion promoterVariable region genesImmunoglobulin genesHeterologous sequencesChromosomal translocationsPoint mutationsGenesRegion genesMutationsHypermutationTranscriptionPromoterB-cell tumors