2018
Immunohistochemical Method and Histopathology Judging for the Systemic Synuclein Sampling Study (S4)
Beach T, Serrano G, Kremer T, Canamero M, Dziadek S, Sade H, Derkinderen P, Corbillé A, Letournel F, Munoz D, White C, Schneider J, Crary J, Sue L, Adler C, Glass M, Intorcia A, Walker J, Foroud T, Coffey C, Ecklund D, Riss H, Goßmann J, König F, Kopil C, Arnedo V, Riley L, Linder C, Dave K, Jennings D, Seibyl J, Mollenhauer B, Chahine L, Guilmette L, Russell D, Noyes-Lloyd C, Mitchell C, Smith D, Potter M, Case R, Lott D, Duffy A, Hogarth P, Cresswell M, Akhtar R, Purri R, Amara A, Blair C, Keshavarzian A, Marras C, Visanji N, Rothberg B, Oza V. Immunohistochemical Method and Histopathology Judging for the Systemic Synuclein Sampling Study (S4). Journal Of Neuropathology & Experimental Neurology 2018, 77: 793-802. PMID: 30107604, PMCID: PMC6097838, DOI: 10.1093/jnen/nly056.Peer-Reviewed Original ResearchConceptsParkinson's diseaseASyn pathologyΑ-synuclein pathologySubmandibular gland biopsyPeripheral biopsiesControl subjectsGland biopsyBlinded panelImmunohistochemical methodsImmunoperoxidase methodMonoclonal antibodiesScore agreementNeuropathologistsPathologyBiopsySkinSubsequent testingSampling study
2014
A Randomized Clinical Trial of High-Dosage Coenzyme Q10 in Early Parkinson Disease: No Evidence of Benefit
Beal M, Oakes D, Shoulson I, Henchcliffe C, Galpern W, Haas R, Juncos J, Nutt J, Voss T, Ravina B, Shults C, Helles K, Snively V, Lew M, Griebner B, Watts A, Gao S, Pourcher E, Bond L, Kompoliti K, Agarwal P, Sia C, Jog M, Cole L, Sultana M, Kurlan R, Richard I, Deeley C, Waters C, Figueroa A, Arkun A, Brodsky M, Ondo W, Hunter C, Jimenez-Shahed J, Palao A, Miyasaki J, So J, Tetrud J, Reys L, Smith K, Singer C, Blenke A, Russell D, Cotto C, Friedman J, Lannon M, Zhang L, Drasby E, Kumar R, Subramanian T, Ford D, Grimes D, Cote D, Conway J, Siderowf A, Evatt M, Sommerfeld B, Lieberman A, Okun M, Rodriguez R, Merritt S, Swartz C, Martin W, King P, Stover N, Guthrie S, Watts R, Ahmed A, Fernandez H, Winters A, Mari Z, Dawson T, Dunlop B, Feigin A, Shannon B, Nirenberg M, Ogg M, Ellias S, Thomas C, Frei K, Bodis-Wollner I, Glazman S, Mayer T, Hauser R, Pahwa R, Langhammer A, Ranawaya R, Derwent L, Sethi K, Farrow B, Prakash R, Litvan I, Robinson A, Sahay A, Gartner M, Hinson V, Markind S, Pelikan M, Perlmutter J, Hartlein J, Molho E, Evans S, Adler C, Duffy A, Lind M, Elmer L, Davis K, Spears J, Wilson S, Leehey M, Hermanowicz N, Niswonger S, Shill H, Obradov S, Rajput A, Cowper M, Lessig S, Song D, Fontaine D, Zadikoff C, Williams K, Blindauer K, Bergholte J, Propsom C, Stacy M, Field J, Mihaila D, Chilton M, Uc E, Sieren J, Simon D, Kraics L, Silver A, Boyd J, Hamill R, Ingvoldstad C, Young J, Thomas K, Kostyk S, Wojcieszek J, Pfeiffer R, Panisset M, Beland M, Reich S, Cines M, Zappala N, Rivest J, Zweig R, Lumina L, Hilliard C, Grill S, Kellermann M, Tuite P, Rolandelli S, Kang U, Young J, Rao J, Cook M, Severt L, Boyar K. A Randomized Clinical Trial of High-Dosage Coenzyme Q10 in Early Parkinson Disease: No Evidence of Benefit. JAMA Neurology 2014, 71: 543-552. PMID: 24664227, DOI: 10.1001/jamaneurol.2014.131.Peer-Reviewed Original ResearchConceptsTotal UPDRS scoresUPDRS scoresCoenzyme Q10PD medicationsFinal visitClinical benefitClinical trialsEarly-phase human studiesPrevious phase II studyDouble-blind clinical trialMini-Mental State Examination scoreParticipants 30 yearsPhase III randomizedPrespecified futility criterionDrug-induced parkinsonismPhase II studyActive treatment groupIU/dEarly Parkinson's diseaseHistory of strokePossible clinical benefitPrimary outcome measureState Examination scoreParkinson's disease modelDiagnosis of PD
2013
Association of Cerebrospinal Fluid β-Amyloid 1-42, T-tau, P-tau181, and α-Synuclein Levels With Clinical Features of Drug-Naive Patients With Early Parkinson Disease
Kang J, Irwin D, Chen-Plotkin A, Siderowf A, Caspell C, Coffey C, Waligórska T, Taylor P, Pan S, Frasier M, Marek K, Kieburtz K, Jennings D, Simuni T, Tanner C, Singleton A, Toga A, Chowdhury S, Mollenhauer B, Trojanowski J, Shaw L, Lasch S, Flagg E, Poewe W, Sherer T, Meunier C, Rudolph A, Casaceli C, Seibyl J, Mendick S, Schuff N, Uribe L, Yankey J, Crawford K, Scutti A, Casalin P, Malferrari G, Hawkins K, Russell D, Leary L, Factor S, Sommerfeld B, Hogarth P, Pighetti E, Williams K, Standaert D, Guthrie S, Hauser R, Jankovic J, Hunter C, Stern M, Darin A, Leverenz J, Baca M, Frank S, Thomas C, Richard I, Deeley C, Rees L, Sprenger F, Oertel W, Willeke D, Shill H, Fernandez H, Mule J, Berg D, Gauss K, Galasko D, Fontaine D, Mari Z, McCoy A, Brooks D, Shah B, Barone P, Isaacson S, James A, Espay A, Espay K, Rowe D, Ranola M. Association of Cerebrospinal Fluid β-Amyloid 1-42, T-tau, P-tau181, and α-Synuclein Levels With Clinical Features of Drug-Naive Patients With Early Parkinson Disease. JAMA Neurology 2013, 70: 1277-1287. PMID: 23979011, PMCID: PMC4034348, DOI: 10.1001/jamaneurol.2013.3861.Peer-Reviewed Original ResearchConceptsDrug-naive patientsEarly Parkinson's diseaseCSF biomarkersΒ-amyloid 1CSF Aβ1-42P-tau181Parkinson's diseaseT-tauAβ1-42Healthy controlsΑ-synucleinClinical featuresPPMI cohortParkinson's Progression Markers Initiative (PPMI) studyLower CSF Aβ1-42Early-stage Parkinson's diseaseT-tau/Aβ1Lower Aβ1-42P-tau181 concentrationsCSF t-tauΑ-synuclein levelsCerebrospinal fluid levelsCross-sectional studyEnzyme-linked immunosorbent assaySignificant correlation
2003
Phospholipase Cγ in Distinct Regions of the Ventral Tegmental Area Differentially Modulates Mood-Related Behaviors
Bolaños C, Perrotti L, Edwards S, Eisch A, Barrot M, Olson V, Russell D, Neve R, Nestler E. Phospholipase Cγ in Distinct Regions of the Ventral Tegmental Area Differentially Modulates Mood-Related Behaviors. Journal Of Neuroscience 2003, 23: 7569-7576. PMID: 12930795, PMCID: PMC6740761, DOI: 10.1523/jneurosci.23-20-07569.2003.Peer-Reviewed Original ResearchConceptsVentral tegmental areaDrugs of abuseAnxiety-like behaviorOverexpression of PLCgamma1Nociceptive stimuliTegmental areaAversive stimuliCaudal ventral tegmental areaDrug-induced elevationMood-related behaviorsMorphine place preferenceMorphine-paired compartmentDistinct topographical regionsViral-mediated gene transferEmotional stimuliNeurotrophic factorNeural substratesNatural rewardsPlace preference
2000
Role for GDNF in Biochemical and Behavioral Adaptations to Drugs of Abuse
Messer C, Eisch A, Carlezon W, Whisler K, Shen L, Wolf D, Westphal H, Collins F, Russell D, Nestler E. Role for GDNF in Biochemical and Behavioral Adaptations to Drugs of Abuse. Neuron 2000, 26: 247-257. PMID: 10798408, PMCID: PMC4451194, DOI: 10.1016/s0896-6273(00)81154-x.Peer-Reviewed Original ResearchConceptsVentral tegmental areaDrugs of abuseAnti-GDNF antibodyIntra-VTA infusionDopaminergic brain regionsSubsequent drug exposureChronic morphineDrug exposureTegmental areaChronic cocaineCocaine exposureRewarding effectsGDNF geneGDNF pathwayBrain regionsGDNFBehavioral sensitivityCocaineDrugsMorphineInfusionPresent studyExposureNull mutationAbuse
1999
Regulation of Phospholipase Cγ in the Mesolimbic Dopamine System by Chronic Morphine Administration
Wolf D, Numan S, Nestler E, Russell D. Regulation of Phospholipase Cγ in the Mesolimbic Dopamine System by Chronic Morphine Administration. Journal Of Neurochemistry 1999, 73: 1520-1528. PMID: 10501197, PMCID: PMC1993239, DOI: 10.1046/j.1471-4159.1999.0731520.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainDopamineDrug ImplantsGene Expression RegulationGene Expression Regulation, EnzymologicInsulin Receptor Substrate ProteinsIntracellular Signaling Peptides and ProteinsIsoenzymesLimbic SystemMaleMorphineNeuronsOrgan SpecificityPhosphatidylinositol 3-KinasesPhospholipase C gammaPhosphoproteinsRatsRats, Sprague-DawleyRNA, MessengerTegmentum MesencephaliTranscription, GeneticType C PhospholipasesConceptsRas-ERK pathwayInsulin receptor substrateVentral tegmental areaNeurotrophic signaling pathwaysMesolimbic dopamine systemPhospholipase Cgamma1Receptor substratePhospholipase CγSignaling pathwaysPathway proteinsDopamine systemProteinPLCgamma1MRNA levelsChronic morphine exposureChronic morphine administrationRegulationPathwayAppreciable levelsMRNA expressionMorphine exposureMorphine administrationDopaminergic neuronsNeurotrophic factorTegmental areaDiscrete expression of insulin receptor substrate-4 mRNA in adult rat brain
Numan S, Russell D. Discrete expression of insulin receptor substrate-4 mRNA in adult rat brain. Brain Research 1999, 72: 97-102. PMID: 10521603, DOI: 10.1016/s0169-328x(99)00160-6.Peer-Reviewed Original ResearchRepeated stress increases catalytic TrkB mRNA in rat hippocampus
Nibuya M, Takahashi M, Russell D, Duman R. Repeated stress increases catalytic TrkB mRNA in rat hippocampus. Neuroscience Letters 1999, 267: 81-84. PMID: 10400217, DOI: 10.1016/s0304-3940(99)00335-3.Peer-Reviewed Original Research
1998
Differential Regulation of Neurotrophin and trkReceptor mRNAs in Catecholaminergic Nuclei during Chronic Opiate Treatment and Withdrawal
Numan S, Lane-Ladd S, Zhang L, Lundgren K, Russell D, Seroogy K, Nestler E. Differential Regulation of Neurotrophin and trkReceptor mRNAs in Catecholaminergic Nuclei during Chronic Opiate Treatment and Withdrawal. Journal Of Neuroscience 1998, 18: 10700-10708. PMID: 9852605, PMCID: PMC6793370, DOI: 10.1523/jneurosci.18-24-10700.1998.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain-Derived Neurotrophic FactorDrug Administration ScheduleDrug ImplantsGene Expression RegulationLocus CoeruleusMaleMesencephalonMorphineNerve Growth FactorsNeurotrophin 3RatsRats, Sprague-DawleyReceptor Protein-Tyrosine KinasesReceptor, Ciliary Neurotrophic FactorReceptor, trkCReceptors, Nerve Growth FactorRNA, MessengerTime FactorsVentral Tegmental AreaConceptsBrain-derived neurotrophic factorVentral tegmental areaChronic morphine treatmentChronic opiate treatmentLocus coeruleusHr of withdrawalMorphine treatmentNeurotrophin-3TrkC mRNAOpiate treatmentNeurotrophin brain-derived neurotrophic factorNT-3 mRNA expressionLevels of TrkBOpiate-induced plasticityTrkB mRNA levelsChronic morphine exposureNT-3 mRNATrkC mRNA levelsMRNA levelsEndogenous neurotrophinsExogenous neurotrophinsTrk mRNABDNF mRNAMorphine exposureTrkB mRNA
1996
Regulation of CREB expression: in vivo evidence for a functional role in morphine action in the nucleus accumbens.
Widnell K, Self D, Lane S, Russell D, Vaidya V, Miserendino M, Rubin C, Duman R, Nestler E. Regulation of CREB expression: in vivo evidence for a functional role in morphine action in the nucleus accumbens. Journal Of Pharmacology And Experimental Therapeutics 1996, 276: 306-15. PMID: 8558448.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCyclic AMP Response Element-Binding ProteinCyclic AMP-Dependent Protein KinasesDown-RegulationGTP-Binding ProteinsMaleMolecular Sequence DataMorphineNucleus AccumbensOligonucleotides, AntisenseProtein Sorting SignalsRatsRats, Sprague-DawleyRNA, MessengerSensitivity and SpecificitySignal TransductionConceptsCAMP response element-binding proteinEffects of morphineNucleus accumbensBrain regionsCREB levelsChronic opiate administrationCAMP pathwayTranscription factor cAMP response element-binding proteinResponse element-binding proteinProperties of opiatesMorphine administrationAnti-sense oligonucleotide strategyMorphine actionOpiate administrationSustained decreaseLong-term effectsElement-binding proteinNervous systemCREB expressionOpiate addictionCREB immunoreactivityDetectable toxicityVivo evidenceMorphineAccumbens
1995
Influence of neurotrophic factors on morphine- and cocaine-induced biochemical changes in the mesolimbic dopamine system
Berhow M, Russell D, Terwilliger R, Beitner-Johnson D, Self D, Lindsay R, Nestler E. Influence of neurotrophic factors on morphine- and cocaine-induced biochemical changes in the mesolimbic dopamine system. Neuroscience 1995, 68: 969-979. PMID: 8545003, DOI: 10.1016/0306-4522(95)00207-y.Peer-Reviewed Original ResearchMeSH KeywordsActinsAdenylyl CyclasesAnimalsAutoradiographyCocaineCyclic AMP-Dependent Protein KinasesDopamineGlial Fibrillary Acidic ProteinInjectionsLimbic SystemMaleMorphineNarcotic AntagonistsNarcoticsNerve Growth FactorsNeurofilament ProteinsNucleus AccumbensRatsRats, Sprague-DawleyTyrosine 3-MonooxygenaseVentral Tegmental AreaConceptsVentral tegmental areaIntra-ventral tegmental area infusionBrain-derived neurotrophic factorGlial fibrillary acidic proteinTyrosine hydroxylase levelsNeurotrophic factorFactor infusionFibrillary acidic proteinTegmental areaMorphine treatmentNerve growth factorAdenylyl cyclase activityNucleus accumbensTyrosine hydroxylaseChronic morphineNeurotrophin-4Cocaine treatmentCocaine exposureHydroxylase levelsGlial fibrillary acidic protein levelsAcidic proteinCyclase activityGrowth factorChronic morphine treatmentChronic cocaine treatment
1994
Regulation of expression of cAMP response element-binding protein in the locus coeruleus in vivo and in a locus coeruleus-like cell line in vitro.
Widnell K, Russell D, Nestler E. Regulation of expression of cAMP response element-binding protein in the locus coeruleus in vivo and in a locus coeruleus-like cell line in vitro. Proceedings Of The National Academy Of Sciences Of The United States Of America 1994, 91: 10947-10951. PMID: 7971989, PMCID: PMC45143, DOI: 10.1073/pnas.91.23.10947.Peer-Reviewed Original ResearchConceptsLocus coeruleusCREB expressionCREB immunoreactivityCell linesChronic morphine administrationLocus coeruleus neuronsCRE-binding activityResponse element-binding proteinCAMP pathwayCREB mRNA levelsCAMP response element-binding proteinMorphine administrationChronic morphineCoeruleus neuronsBrain regionsCRE bindingOpiate addictionElement-binding proteinPC12 pheochromocytoma cellsCAMP response elementMRNA levelsPheochromocytoma cellsCoeruleusImmunoreactivityCREB mRNA