2023
The age of bone marrow dictates the clonality of smooth muscle-derived cells in atherosclerotic plaques
Kabir I, Zhang X, Dave J, Chakraborty R, Qu R, Chandran R, Ntokou A, Gallardo-Vara E, Aryal B, Rotllan N, Garcia-Milian R, Hwa J, Kluger Y, Martin K, Fernández-Hernando C, Greif D. The age of bone marrow dictates the clonality of smooth muscle-derived cells in atherosclerotic plaques. Nature Aging 2023, 3: 64-81. PMID: 36743663, PMCID: PMC9894379, DOI: 10.1038/s43587-022-00342-5.Peer-Reviewed Original ResearchConceptsAtherosclerotic plaquesBone marrowSmooth muscle-derived cellsSMC progenitorsAtherosclerotic plaque cellsSmooth muscle cell progenitorsPredominant risk factorCause of deathNovel therapeutic strategiesTNF receptor 1Muscle-derived cellsAged bone marrowAged BMEffect of agePlaque burdenAged miceRisk factorsTumor necrosisTherapeutic strategiesPlaque cellsMyeloid cellsReceptor 1Integrin β3Cell progenitorsAtherosclerosis
2017
Where do new endothelial cells come from in the injured heart?
Greif DM, Eichmann A. Where do new endothelial cells come from in the injured heart? Nature Reviews Cardiology 2017, 14: 507-508. PMID: 28770866, DOI: 10.1038/nrcardio.2017.121.Commentaries, Editorials and Letters
2016
Chapter Eight Vascular Cells in Blood Vessel Wall Development and Disease
Mazurek R, Dave JM, Chandran RR, Misra A, Sheikh AQ, Greif DM. Chapter Eight Vascular Cells in Blood Vessel Wall Development and Disease. Advances In Pharmacology 2016, 78: 323-350. PMID: 28212800, PMCID: PMC5559712, DOI: 10.1016/bs.apha.2016.08.001.BooksConceptsDistinct cellular layersVascular cellsRegulated processGenetic approachesWall developmentDevelopmental eventsIndividual cellsDiverse vascular diseasesCellular mechanismsCell proliferationCellsNormal vascular wallCellular layersMorphogenesisTherapeutic strategiesBiologyDifferentiationVascular wallMajor ramificationsProliferationFurther investigationVessel wallMigrationIntegrin β3 inhibition is a therapeutic strategy for supravalvular aortic stenosis
Misra A, Sheikh AQ, Kumar A, Luo J, Zhang J, Hinton RB, Smoot L, Kaplan P, Urban Z, Qyang Y, Tellides G, Greif DM. Integrin β3 inhibition is a therapeutic strategy for supravalvular aortic stenosis. Journal Of Experimental Medicine 2016, 213: 451-463. PMID: 26858344, PMCID: PMC4813675, DOI: 10.1084/jem.20150688.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsMutant miceTherapeutic strategiesAortic stenosis patientsAortic smooth muscle cellsSupravalvular aortic stenosisAttractive therapeutic strategyIntegrin β3 levelsAortic pathologyAortic stenosisStenosis patientsArterial diseaseLumen lossPathological featuresArterial mediaLarge arteriesAortic mediaElastin deficiencyPharmacological inhibitionMuscle cellsStenosisMicePathological stenosisExplant culturesSVAS patients
2015
Smooth muscle cell progenitors are primed to muscularize in pulmonary hypertension
Sheikh AQ, Misra A, Rosas IO, Adams RH, Greif DM. Smooth muscle cell progenitors are primed to muscularize in pulmonary hypertension. Science Translational Medicine 2015, 7: 308ra159. PMID: 26446956, PMCID: PMC4629985, DOI: 10.1126/scitranslmed.aaa9712.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsKruppel-like factor 4Pulmonary hypertensionSmooth muscleHypoxia-induced pulmonary hypertensionPathogenesis of PHPulmonary artery blood pressureSMC progenitorsArteriole smooth muscleArtery blood pressureSmooth muscle cell progenitorsCardiovascular disease pathogenesisPlatelet-derived growth factor receptorHypoxia-induced expressionGrowth factor receptorPH patientsBlood pressurePulmonary arteriolesVascular disordersTherapeutic strategiesDisease pathogenesisKLF4 levelsKLF4 expressionDistal extensionMuscle cells
2013
Development and pathologies of the arterial wall
Seidelmann SB, Lighthouse JK, Greif DM. Development and pathologies of the arterial wall. Cellular And Molecular Life Sciences 2013, 71: 1977-1999. PMID: 24071897, PMCID: PMC11113178, DOI: 10.1007/s00018-013-1478-y.Peer-Reviewed Original ResearchMeSH KeywordsAngiogenic ProteinsAnimalsArteriesCardiovascular DiseasesCell DifferentiationCell LineageEndothelial CellsEndothelium, VascularGene Expression Regulation, DevelopmentalHumansMorphogenesisMuscle, Smooth, VascularMyocytes, Smooth MuscleNeovascularization, PathologicNeovascularization, PhysiologicConceptsAdventitial progenitor cellsDevastating vascular diseaseDevelopmental biologyWall developmentSmooth muscle cell originHuman diseasesExtracellular matrixMuscle cell originProcess of angiogenesisProgenitor cellsEndothelial networksDisease mechanismsNovel therapeutic strategiesDevelopmental studiesEndothelial cellsSmooth muscleCellsMorphogenesisTherapeutic strategiesCell originBiologyDifferentiationVascular diseaseVascular wallVascular wall abnormalities
2010
Targeting Robo4-Dependent Slit Signaling to Survive the Cytokine Storm in Sepsis and Influenza
London NR, Zhu W, Bozza FA, Smith MC, Greif DM, Sorensen LK, Chen L, Kaminoh Y, Chan AC, Passi SF, Day CW, Barnard DL, Zimmerman GA, Krasnow MA, Li DY. Targeting Robo4-Dependent Slit Signaling to Survive the Cytokine Storm in Sepsis and Influenza. Science Translational Medicine 2010, 2: 23ra19. PMID: 20375003, PMCID: PMC2875996, DOI: 10.1126/scitranslmed.3000678.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCadherinsCapillary PermeabilityCateninsCell LineCytokinesDelta CateninDisease Models, AnimalEndothelium, VascularHumansInfluenza A Virus, H5N1 SubtypeIntercellular Signaling Peptides and ProteinsLipopolysaccharidesMiceMice, Inbred C57BLNerve Tissue ProteinsOrthomyxoviridae InfectionsProtein BindingProtein StabilityProtein TransportReceptors, Cell SurfaceReceptors, ImmunologicSepsisSignal TransductionConceptsInnate immune responseImmune systemCytokine stormImmune responseInfectious agentsHost innate immune responseCurrent medical therapyMultiple inflammatory cytokinesBacterial endotoxin exposureHost immune systemInnate immune systemMultiple infectious agentsAdditional immune responsesPolymicrobial sepsisMedical therapyOrgan failureInflammatory cytokinesCytokine releaseTumor necrosisEndotoxin exposureTissue edemaInterleukin-1betaVascular permeabilityTherapeutic strategiesAnimal models