2024
Compartmentalized pooling generates orientation selectivity in wide-field amacrine cells
Lei W, Clark D, Demb J. Compartmentalized pooling generates orientation selectivity in wide-field amacrine cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2411130121. PMID: 39602271, PMCID: PMC11626119, DOI: 10.1073/pnas.2411130121.Peer-Reviewed Original ResearchConceptsOrientation selectivityBand-pass spatial frequency tuningVisual systemReceptive fieldsSpatial frequency tuningWide-field amacrine cellsReceptive field modelOrientation detectionKappa-opioid receptorsAmacrine cellsDetecting orientationVisual sceneFrequency tuningGlycinergic inhibitionOpioid receptorsField modelSpecific membrane resistanceExcitatory inputSynaptic inputsCalcium imagingMouse retinaCalcium signalingDendritic compartmentsMicrocircuit levelPolarization
2023
Neural mechanisms to incorporate visual counterevidence in self-movement estimation
Tanaka R, Zhou B, Agrochao M, Badwan B, Au B, Matos N, Clark D. Neural mechanisms to incorporate visual counterevidence in self-movement estimation. Current Biology 2023, 33: 4960-4979.e7. PMID: 37918398, PMCID: PMC10848174, DOI: 10.1016/j.cub.2023.10.011.Peer-Reviewed Original ResearchLong-timescale anti-directional rotation in Drosophila optomotor behavior
Mano O, Choi M, Tanaka R, Creamer M, Matos N, Shomar J, Badwan B, Clandinin T, Clark D. Long-timescale anti-directional rotation in Drosophila optomotor behavior. ELife 2023, 12: e86076. PMID: 37751469, PMCID: PMC10522332, DOI: 10.7554/elife.86076.Peer-Reviewed Original ResearchConceptsRetinal slipLobula plateLobula plate tangential cellsVisual stimuliDirection-selective cellsExtensive dissectionTangential cellsCertain stimulus conditionsLocomotor movementsCH cellsStabilization responseMotion visionStimulus conditionsOptomotor responseOptomotor behaviorCellsAnimalsResponseOptomotorStimuliReflexDissection
2022
Odour motion sensing enhances navigation of complex plumes
Kadakia N, Demir M, Michaelis B, DeAngelis B, Reidenbach M, Clark D, Emonet T. Odour motion sensing enhances navigation of complex plumes. Nature 2022, 611: 754-761. PMID: 36352224, PMCID: PMC10039482, DOI: 10.1038/s41586-022-05423-4.Peer-Reviewed Original ResearchConceptsRobot navigationVirtual agentsEffective navigationMultiple featuresMultiple streamsNavigationUncertain environmentMotion sensingVirtual reality paradigmTemporal correlationDirectional informationNavigational decisionsInformationComplex plumesSensingAlgorithmSensory inputInputParadigmSearchEnvironmentStreamsGeneralityNeural mechanisms to exploit positional geometry for collision avoidance
Tanaka R, Clark DA. Neural mechanisms to exploit positional geometry for collision avoidance. Current Biology 2022, 32: 2357-2374.e6. PMID: 35508172, PMCID: PMC9177691, DOI: 10.1016/j.cub.2022.04.023.Peer-Reviewed Original ResearchConceptsSpatial vision taskDistinct visual featuresNeural mechanismsVisual worldVisual motionSmall neural circuitsCollision avoidance behaviorSpatial visionMotion signalsVisual featuresNeural circuitsDrosophila exhibitConnectomic analysisGeometrical cuesSpatial informationVision tasksActivity drivesTuning mirrorMotion detectorsPsychophysicsCuesObjectsTaskBehaviorAvoidanceParallel locomotor control strategies in mice and flies
Gonçalves AI, Zavatone-Veth JA, Carey MR, Clark DA. Parallel locomotor control strategies in mice and flies. Current Opinion In Neurobiology 2022, 73: 102516. PMID: 35158168, DOI: 10.1016/j.conb.2022.01.001.Peer-Reviewed Original ResearchShallow neural networks trained to detect collisions recover features of visual loom-selective neurons.
Zhou B, Li Z, Kim S, Lafferty J, Clark DA. Shallow neural networks trained to detect collisions recover features of visual loom-selective neurons. ELife 2022, 11 PMID: 35023828, PMCID: PMC8849349, DOI: 10.7554/elife.72067.Peer-Reviewed Original Research
2021
Predicting individual neuron responses with anatomically constrained task optimization
Mano O, Creamer MS, Badwan BA, Clark DA. Predicting individual neuron responses with anatomically constrained task optimization. Current Biology 2021, 31: 4062-4075.e4. PMID: 34324832, PMCID: PMC8741219, DOI: 10.1016/j.cub.2021.06.090.Peer-Reviewed Original ResearchConceptsArtificial networksInference problemStatistical representationTask optimizationSmall neural networksNeural networkNoise constraintsMotion detection modelArtificial neural networkBiological circuitsMotion detectorsModelNetworkPropertiesOptimizationConstraintsIndividual neuron responsesDetectorNoiseProblemNeuron propertiesCircuit
2020
Mechanism for analogous illusory motion perception in flies and humans
Agrochao M, Tanaka R, Salazar-Gatzimas E, Clark DA. Mechanism for analogous illusory motion perception in flies and humans. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 23044-23053. PMID: 32839324, PMCID: PMC7502748, DOI: 10.1073/pnas.2002937117.Peer-Reviewed Original ResearchObject-Displacement-Sensitive Visual Neurons Drive Freezing in Drosophila
Tanaka R, Clark DA. Object-Displacement-Sensitive Visual Neurons Drive Freezing in Drosophila. Current Biology 2020, 30: 2532-2550.e8. PMID: 32442466, PMCID: PMC8716191, DOI: 10.1016/j.cub.2020.04.068.Peer-Reviewed Original ResearchHeterogeneous Temporal Contrast Adaptation in Drosophila Direction-Selective Circuits
Matulis CA, Chen J, Gonzalez-Suarez AD, Behnia R, Clark DA. Heterogeneous Temporal Contrast Adaptation in Drosophila Direction-Selective Circuits. Current Biology 2020, 30: 222-236.e6. PMID: 31928874, PMCID: PMC7003801, DOI: 10.1016/j.cub.2019.11.077.Peer-Reviewed Original Research
2019
Dynamic nonlinearities enable direction opponency in Drosophila elementary motion detectors
Badwan BA, Creamer MS, Zavatone-Veth JA, Clark DA. Dynamic nonlinearities enable direction opponency in Drosophila elementary motion detectors. Nature Neuroscience 2019, 22: 1318-1326. PMID: 31346296, PMCID: PMC6748873, DOI: 10.1038/s41593-019-0443-y.Peer-Reviewed Original ResearchThe manifold structure of limb coordination in walking Drosophila
DeAngelis BD, Zavatone-Veth JA, Clark DA. The manifold structure of limb coordination in walking Drosophila. ELife 2019, 8: e46409. PMID: 31250807, PMCID: PMC6598772, DOI: 10.7554/elife.46409.Peer-Reviewed Original Research
2018
The Neuronal Basis of an Illusory Motion Percept Is Explained by Decorrelation of Parallel Motion Pathways
Salazar-Gatzimas E, Agrochao M, Fitzgerald JE, Clark DA. The Neuronal Basis of an Illusory Motion Percept Is Explained by Decorrelation of Parallel Motion Pathways. Current Biology 2018, 28: 3748-3762.e8. PMID: 30471993, PMCID: PMC6317970, DOI: 10.1016/j.cub.2018.10.007.Peer-Reviewed Original ResearchVisual Control of Walking Speed in Drosophila
Creamer MS, Mano O, Clark DA. Visual Control of Walking Speed in Drosophila. Neuron 2018, 100: 1460-1473.e6. PMID: 30415994, PMCID: PMC6405217, DOI: 10.1016/j.neuron.2018.10.028.Peer-Reviewed Original Research
2016
Parallel Computations in Insect and Mammalian Visual Motion Processing
Clark DA, Demb JB. Parallel Computations in Insect and Mammalian Visual Motion Processing. Current Biology 2016, 26: r1062-r1072. PMID: 27780048, PMCID: PMC5108051, DOI: 10.1016/j.cub.2016.08.003.Peer-Reviewed Original ResearchDirect Measurement of Correlation Responses in Drosophila Elementary Motion Detectors Reveals Fast Timescale Tuning
Salazar-Gatzimas E, Chen J, Creamer MS, Mano O, Mandel HB, Matulis CA, Pottackal J, Clark DA. Direct Measurement of Correlation Responses in Drosophila Elementary Motion Detectors Reveals Fast Timescale Tuning. Neuron 2016, 92: 227-239. PMID: 27710784, PMCID: PMC5097865, DOI: 10.1016/j.neuron.2016.09.017.Peer-Reviewed Original Research
2015
Nonlinear circuits for naturalistic visual motion estimation
Fitzgerald JE, Clark DA. Nonlinear circuits for naturalistic visual motion estimation. ELife 2015, 4: e09123. PMID: 26499494, PMCID: PMC4663970, DOI: 10.7554/elife.09123.Peer-Reviewed Original Research
2001
Scalable architecture in mammalian brains
Clark D, Mitra P, Wang S. Scalable architecture in mammalian brains. Nature 2001, 411: 189-193. PMID: 11346794, DOI: 10.1038/35075564.Peer-Reviewed Original ResearchConceptsMammalian taxaWorld monkeysSize-independent effectsEvolutionary relationshipsOld World monkeysNew World monkeysAbsolute brain sizeSpecies measuresCerebrotypeQuantitative neuroanatomical dataTaxaBrain sizeMammalian brainSize relationshipBrain compositionTotal brain volumePhylogenyLemursSpeciesBody weightBrain volumeHominoidsIndependent variationLorisesBrain architecture