Featured Publications
Modular PROTAC Design for the Degradation of Oncogenic BCR‐ABL
Lai AC, Toure M, Hellerschmied D, Salami J, Jaime‐Figueroa S, Ko E, Hines J, Crews CM. Modular PROTAC Design for the Degradation of Oncogenic BCR‐ABL. Angewandte Chemie International Edition 2015, 55: 807-810. PMID: 26593377, PMCID: PMC4733637, DOI: 10.1002/anie.201507634.Peer-Reviewed Original ResearchChemical Genetic Control of Protein Levels: Selective in Vivo Targeted Degradation
Schneekloth JS, Fonseca FN, Koldobskiy M, Mandal A, Deshaies R, Sakamoto K, Crews CM. Chemical Genetic Control of Protein Levels: Selective in Vivo Targeted Degradation. Journal Of The American Chemical Society 2004, 126: 3748-3754. PMID: 15038727, DOI: 10.1021/ja039025z.Peer-Reviewed Original ResearchConceptsGreen fluorescent proteinProtein functionCell biological questionsGenetic model systemUbiquitin-proteasome pathwayChemical knockoutTargeted degradationBiological questionsProtein degradationGenetic strategiesGenetic controlGenetic lossTarget proteinsFluorescent proteinChimeric moleculesCultured cellsFKBP12 ligandsProteinProtein levelsModel systemWestern blotGeneral strategyFunction analysisVivo examplesFluorometric analysis
2011
Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteins
Neklesa TK, Tae HS, Schneekloth AR, Stulberg MJ, Corson TW, Sundberg TB, Raina K, Holley SA, Crews CM. Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteins. Nature Chemical Biology 2011, 7: 538-543. PMID: 21725302, PMCID: PMC3139752, DOI: 10.1038/nchembio.597.Peer-Reviewed Original Research
2003
Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro
Garrett IR, Chen D, Gutierrez G, Zhao M, Escobedo A, Rossini G, Harris SE, Gallwitz W, Kim KB, Hu S, Crews CM, Mundy GR. Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. Journal Of Clinical Investigation 2003, 111: 1771-1782. PMID: 12782679, PMCID: PMC156102, DOI: 10.1172/jci16198.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, NorthernBlotting, WesternBone and BonesBone DevelopmentBone Morphogenetic Protein 2Bone Morphogenetic Protein 4Bone Morphogenetic ProteinsCarrier ProteinsCell DivisionCell LineCysteine EndopeptidasesDNADose-Response Relationship, DrugEnzyme-Linked Immunosorbent AssayGenetic VectorsHumansLuciferasesMiceMice, Inbred ICRMultienzyme ComplexesOrgan Culture TechniquesOsteoblastsPromoter Regions, GeneticProteasome Endopeptidase ComplexProteinsRNA, MessengerSkullTranscription, GeneticTransfectionTransforming Growth Factor betaConceptsUbiquitin-proteasome pathwayBMP-4BMP-2Osteoblast differentiationBMP-6 mRNA expressionUbiquitin-proteasome machineryEffect of nogginCatalytic beta subunitsProteasome inhibitorsBMP-2 gene expressionBone morphogenetic protein-2Drosophila homologueMorphogenetic protein-2Gli3 proteinGene expressionBeta subunitProteolytic processingProtein 2Bone formationDifferent inhibitorsEndogenous inhibitorOsteoblastic cellsProteasomeNogginInhibitor-1
2000
The Selective Proteasome Inhibitors Lactacystin and Epoxomicin Can Be Used to Either Up- or Down-Regulate Antigen Presentation at Nontoxic Doses
Schwarz K, de Giuli R, Schmidtke G, Kostka S, van den Broek M, Kim K, Crews C, Kraft R, Groettrup M. The Selective Proteasome Inhibitors Lactacystin and Epoxomicin Can Be Used to Either Up- or Down-Regulate Antigen Presentation at Nontoxic Doses. The Journal Of Immunology 2000, 164: 6147-6157. PMID: 10843664, PMCID: PMC2507740, DOI: 10.4049/jimmunol.164.12.6147.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcysteineAmino Acid SequenceAnimalsAntigen PresentationAntigens, ViralApoptosisCell DivisionCell LineCysteine EndopeptidasesCysteine Proteinase InhibitorsDose-Response Relationship, ImmunologicDown-RegulationGlycoproteinsHumansHybridomasHydrolysisLymphocyte ActivationLymphocytic choriomeningitis virusMiceMice, Inbred BALB CMice, Inbred C57BLMolecular Sequence DataMultienzyme ComplexesNucleoproteinsOligopeptidesPeptide FragmentsProteasome Endopeptidase ComplexT-Lymphocytes, CytotoxicTumor Cells, CulturedUbiquitinsUp-RegulationViral ProteinsConceptsAg presentationProteasome inhibitor lactacystinCellular proliferationProteasome activitySelective inhibitionMHC class IDose-dependent mannerTransplant rejectionAutoimmune diseasesMouse CMVAntigen presentationMost MHC class INontoxic dosesChymotrypsin-like activityClass ISelective proteasome inhibitor lactacystinApoptosis inductionMicroM lactacystinViral proteinsPresentationInhibitionComplete inhibitionLactacystinVivoProliferation
1993
Reconstitution of the Raf-1-MEK-ERK signal transduction pathway in vitro.
Macdonald SG, Crews CM, Wu L, Driller J, Clark R, Erikson RL, McCormick F. Reconstitution of the Raf-1-MEK-ERK signal transduction pathway in vitro. Molecular And Cellular Biology 1993, 13: 6615-6620. PMID: 8413257, PMCID: PMC364724, DOI: 10.1128/mcb.13.11.6615.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBaculoviridaeCell LineCloning, MolecularGenes, rasGenes, srcHumansMAP Kinase Kinase 1Mitogen-Activated Protein Kinase KinasesMothsMutagenesis, Site-DirectedPhosphorylationPolymerase Chain ReactionProtein Serine-Threonine KinasesProtein-Tyrosine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-rafProto-Oncogene Proteins p21(ras)Recombinant ProteinsSignal TransductionTransfectionConceptsRaf-1V-SrcV-rasSf9 cellsGlutathione S-transferase fusion proteinS-transferase fusion proteinSerine/threonine kinaseProtein kinase C phosphorylationKinase-inactive versionERK signal transduction pathwayKinase-inactive mutantRaf-1 phosphorylationKinase C phosphorylationSignal transduction pathwaysRaf-1-MEKActivation of MEKTyrosine kinase oncogenesProtein kinase CAutokinase activityFunction upstreamThreonine kinaseDirect substrateMEK activationTransduction pathwaysC phosphorylation