Featured Publications
The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study
Burslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, Bondeson DP, Toure M, Dong H, Qian Y, Wang J, Crew AP, Hines J, Crews CM. The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chemical Biology 2017, 25: 67-77.e3. PMID: 29129716, PMCID: PMC5831399, DOI: 10.1016/j.chembiol.2017.09.009.Peer-Reviewed Original ResearchConceptsReceptor tyrosine kinasesProtein familyProtein degradationTyrosine kinaseDownstream signaling responseTargeted Protein DegradationDevelopment of PROTACsTargeted degradationEndogenous proteinsSignaling responseChimera technologyCell proliferationPROTACsPROTAC technologyKinaseKinase inhibitorsLigand showAdvantages of degradationReceptor tyrosine kinase inhibitorsTyrosine kinase inhibitorsInhibitionDegradationFamilyPowerful toolProteolysisInduced protein degradation: an emerging drug discovery paradigm
Lai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm. Nature Reviews Drug Discovery 2016, 16: 101-114. PMID: 27885283, PMCID: PMC5684876, DOI: 10.1038/nrd.2016.211.Peer-Reviewed Original ResearchConceptsProteolysis-targeting chimaerasProtein degradationUndruggable proteomeTarget protein degradationDifferent E3 ligasesInhibitor-based approachE3 ligasesDrug discovery platformProtein targetsProteomeDiscovery platformProtein expressionDrug discovery paradigmInhibition approachCell culturesDiscovery paradigmLigasesExact mechanismDegradationMouse modelDegradersProteinChimaerasPicomolar potencyCatalytic in vivo protein knockdown by small-molecule PROTACs
Bondeson DP, Mares A, Smith IE, Ko E, Campos S, Miah AH, Mulholland KE, Routly N, Buckley DL, Gustafson JL, Zinn N, Grandi P, Shimamura S, Bergamini G, Faelth-Savitski M, Bantscheff M, Cox C, Gordon DA, Willard RR, Flanagan JJ, Casillas LN, Votta BJ, den Besten W, Famm K, Kruidenier L, Carter PS, Harling JD, Churcher I, Crews CM. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nature Chemical Biology 2015, 11: 611-617. PMID: 26075522, PMCID: PMC4629852, DOI: 10.1038/nchembio.1858.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsBinding SitesBiocatalysisBreast NeoplasmsFemaleHumansMCF-7 CellsMiceModels, MolecularMolecular Targeted TherapyNeoplasm ProteinsNeoplasm TransplantationProteasome Endopeptidase ComplexProtein BindingProteolysisReceptor-Interacting Protein Serine-Threonine Kinase 2Receptors, EstrogenSmall Molecule LibrariesUbiquitinUbiquitinationVon Hippel-Lindau Tumor Suppressor ProteinChemical Genetic Control of Protein Levels: Selective in Vivo Targeted Degradation
Schneekloth JS, Fonseca FN, Koldobskiy M, Mandal A, Deshaies R, Sakamoto K, Crews CM. Chemical Genetic Control of Protein Levels: Selective in Vivo Targeted Degradation. Journal Of The American Chemical Society 2004, 126: 3748-3754. PMID: 15038727, DOI: 10.1021/ja039025z.Peer-Reviewed Original ResearchConceptsGreen fluorescent proteinProtein functionCell biological questionsGenetic model systemUbiquitin-proteasome pathwayChemical knockoutTargeted degradationBiological questionsProtein degradationGenetic strategiesGenetic controlGenetic lossTarget proteinsFluorescent proteinChimeric moleculesCultured cellsFKBP12 ligandsProteinProtein levelsModel systemWestern blotGeneral strategyFunction analysisVivo examplesFluorometric analysis
2022
PROTACs: past, present and future
Li K, Crews CM. PROTACs: past, present and future. Chemical Society Reviews 2022, 51: 5214-5236. PMID: 35671157, PMCID: PMC10237031, DOI: 10.1039/d2cs00193d.Peer-Reviewed Original ResearchConceptsProtein of interestProteolysis-targeting chimerasUbiquitin-proteasome systemE3 ubiquitin ligaseSmall molecule inhibitorsUbiquitin ligaseNonenzymatic functionProtein degradationHeterobifunctional moleculesDrug resistance mechanismsMolecule inhibitorsSubsequent degradationUbiquitinationLigasePromising therapeuticsProteinChimerasPotential toxicityDegradationMechanismHijacking Methyl Reader Proteins for Nuclear-Specific Protein Degradation
Nalawansha DA, Li K, Hines J, Crews CM. Hijacking Methyl Reader Proteins for Nuclear-Specific Protein Degradation. Journal Of The American Chemical Society 2022, 144: 5594-5605. PMID: 35311258, PMCID: PMC10331457, DOI: 10.1021/jacs.2c00874.Peer-Reviewed Original ResearchConceptsE3 ligase complexLigase complexProtein degradationReader proteinsMethyl readersE3 ligaseProteasomal degradationPROTAC designProtein levelsProteinLigand pairsDrug discovery paradigmPROTACsNatural mechanismGeneralizable approachComplexesDiscovery paradigmCUL4BRD2DegradationLigaseL3MBTL3FKBP12Biological evaluationPromising strategy
2021
Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation
Bond MJ, Crews CM. Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation. RSC Chemical Biology 2021, 2: 725-742. PMID: 34212149, PMCID: PMC8190915, DOI: 10.1039/d1cb00011j.Peer-Reviewed Original ResearchTargeted protein degradation: A promise for undruggable proteins
Samarasinghe KTG, Crews CM. Targeted protein degradation: A promise for undruggable proteins. Cell Chemical Biology 2021, 28: 934-951. PMID: 34004187, PMCID: PMC8286327, DOI: 10.1016/j.chembiol.2021.04.011.Peer-Reviewed Original ResearchConceptsProteolysis Targeting ChimerasUndruggable proteinsDisease-causing proteinsProtein degradation strategiesProteostasis mechanismsProtein homeostasisTranscription factorsProtein degradationHeterobifunctional moleculesProteinDegradation strategiesDisease initiationBiological effectsProteostasisDegradationPotential therapeutic modalityHomeostasisChimerasCellsAccumulationMajor advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs
Alabi SB, Crews C. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. Journal Of Biological Chemistry 2021, 296: 100647. PMID: 33839157, PMCID: PMC8131913, DOI: 10.1016/j.jbc.2021.100647.Peer-Reviewed Original ResearchConceptsProtein degradationProtein degradation pathwaysProteolysis targeting chimera (PROTAC) technologyUbiquitin-proteasome systemEndo-lysosomal pathwaySmall molecule inhibitorsDruggable spaceChemical toolsInnovative chemical toolMolecular glueChimera technologyProtein moleculesDegradation pathwayOutstanding questionsCurrent understandingMajor advancesPathwayAutophagyPROTACsDegradationCellsInhibitorsAdvances
2016
Small‐Molecule PROTACS: New Approaches to Protein Degradation
Toure M, Crews CM. Small‐Molecule PROTACS: New Approaches to Protein Degradation. Angewandte Chemie International Edition 2016, 55: 1966-1973. PMID: 26756721, DOI: 10.1002/anie.201507978.Peer-Reviewed Original ResearchConceptsProteolysis-targeting chimerasProtein degradationCellular quality control machineryQuality control machineryNovel catalytic mechanismInhibitor-based approachDrug target spaceProtein functionControl machineryProtein classesProtein destructionCatalytic mechanismCellular levelActive siteTherapeutic potentialOff-target side effectsMachineryRecent reportsChimerasDegradationRecruitmentTherapeuticsInhibition
2015
HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins
Buckley DL, Raina K, Darricarrere N, Hines J, Gustafson JL, Smith IE, Miah AH, Harling JD, Crews CM. HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. ACS Chemical Biology 2015, 10: 1831-1837. PMID: 26070106, PMCID: PMC4629848, DOI: 10.1021/acschembio.5b00442.Peer-Reviewed Original ResearchConceptsChemical probesMore drug-like propertiesFusion proteinSmall-molecule PROTACsProtein degradationDrug-like propertiesE3 ligase ligandChemical genetic toolsSpecific E3 ligasesProtein of interestVHL ligandsHaloTag fusion proteinsE3 ligasesGenetic toolsHeterobifunctional moleculesNumerous proteinsHaloPROTACLigandsPROTACsProteinNovel classAttractive strategyDegradationProbeLigases
2014
Small‐Molecule Control of Intracellular Protein Levels through Modulation of the Ubiquitin Proteasome System
Buckley DL, Crews CM. Small‐Molecule Control of Intracellular Protein Levels through Modulation of the Ubiquitin Proteasome System. Angewandte Chemie International Edition 2014, 53: 2312-2330. PMID: 24459094, PMCID: PMC4348030, DOI: 10.1002/anie.201307761.Peer-Reviewed Original ResearchConceptsSmall molecule modulatorsProtein levelsSmall-molecule probesUbiquitin-proteasome systemActivity of proteinsIntracellular protein levelsBiological probesProteasome systemProtein degradationUbiquitin-proteasomeProtein activitySmall moleculesMolecule controlDruggable targetsProteomeProteasomeTargeted fashionProteinRemaining majorityGlobal increaseProbeUPSMoleculesDegradationMultiple strategies
2012
Greasy tags for protein removal
Neklesa TK, Crews CM. Greasy tags for protein removal. Nature 2012, 487: 308-309. PMID: 22810693, DOI: 10.1038/487308a.Peer-Reviewed Original Research
2010
Chemical Inducers of Targeted Protein Degradation*
Raina K, Crews CM. Chemical Inducers of Targeted Protein Degradation*. Journal Of Biological Chemistry 2010, 285: 11057-11060. PMID: 20147751, PMCID: PMC2856979, DOI: 10.1074/jbc.r109.078105.Peer-Reviewed Original ResearchConceptsProtein degradationTargeted Protein DegradationPost-translational levelSubsequent phenotypic analysisProtein functionSelective gene inactivationCellular proteinsCellular phenotypesRNA interferenceGene inactivationSpecific proteinsChemical inducersPhenotypic analysisChemical inductionGenetic mutationsProteinGenesDegradationMutationsPhenotypeDecreased productionMRNAInducerInactivationInduction
2001
The ubiquitin‐proteasome pathway and proteasome inhibitors
Myung J, Kim K, Crews C. The ubiquitin‐proteasome pathway and proteasome inhibitors. Medicinal Research Reviews 2001, 21: 245-273. PMID: 11410931, PMCID: PMC2556558, DOI: 10.1002/med.1009.Peer-Reviewed Original ResearchConceptsUbiquitin-proteasome pathwayComplex biochemical machineryHuman diseasesDiverse cellular processesImportant cellular substratesMajor cellular networksCellular processesBiochemical machineryProtein degradationNatural proteasome inhibitorsCellular substratesCentral playerIntracellular processesMode of actionProteasome inhibitorsPathwayMolecular probesInhibitorsPotential therapeutic agentProteasomeImportant componentMachineryRegulationTherapeutic agentsLack of Proteasome Active Site Allostery as Revealed by Subunit-Specific Inhibitors
Myung J, Kim K, Lindsten K, Dantuma N, Crews C. Lack of Proteasome Active Site Allostery as Revealed by Subunit-Specific Inhibitors. Molecular Cell 2001, 7: 411-420. PMID: 11239469, DOI: 10.1016/s1097-2765(01)00188-5.Peer-Reviewed Original ResearchMeSH KeywordsAllosteric RegulationAnimalsBinding SitesCattleCell DivisionCells, CulturedChymotrypsinCysteine EndopeptidasesEndopeptidasesEpoxy CompoundsHumansHydrolysisKetonesKineticsModels, BiologicalMultienzyme ComplexesProtease InhibitorsProteasome Endopeptidase ComplexProtein SubunitsRecombinant Fusion ProteinsSerineSubstrate SpecificityTransfectionConceptsProtein degradation assaysSubunit-specific inhibitorsProtein degradationDegradation assaysCellular proliferationChymotrypsin-like activityPeptidyl-glutamyl peptideEpoxyketone inhibitorsActive siteSuch interactionsInhibitorsAllosteryProteasomeSitesSubunitsInhibitionSubstrateActivityProliferationAssaysPeptidesOccupancy