2018
Role of phosphate sensing in bone and mineral metabolism
Chande S, Bergwitz C. Role of phosphate sensing in bone and mineral metabolism. Nature Reviews Endocrinology 2018, 14: 637-655. PMID: 30218014, PMCID: PMC8607960, DOI: 10.1038/s41574-018-0076-3.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsPi transportersSignal transductionPi homeostasisCellular phosphate homeostasisPhosphate homeostasisExpression of Pi transportersPi-sensing mechanismEssential structural componentIntracellular signal transductionPi transportMulticellular organismsInositol pyrophosphatesIntracellular Pi levelsDomain proteinsRegulation of FGF23 expressionPlasma membranePhosphate sensingDisorders of phosphate homeostasisCell metabolismExtracellular matrixCellular levelHomeostasisTransductionGenetic disordersOrganisms
2017
Response of Npt2a knockout mice to dietary calcium and phosphorus
Li Y, Caballero D, Ponsetto J, Chen A, Zhu C, Guo J, Demay M, Jüppner H, Bergwitz C. Response of Npt2a knockout mice to dietary calcium and phosphorus. PLOS ONE 2017, 12: e0176232. PMID: 28448530, PMCID: PMC5407772, DOI: 10.1371/journal.pone.0176232.Peer-Reviewed Original ResearchConceptsCompared to WT miceWT miceDietary calciumDietary phosphateCalcium x phosphorus productUrine phosphate levelsUrinary calcium excretionUrine anion gapDevelopment of novel therapiesWild-typeRenal stone diseaseWild-type miceNpt2a-knockout (KO) miceCalcium excretionFGF23 levelsNovel therapiesPreventing nephrolithiasisPlasma phosphateStone diseaseAnion gapAddition of calciumKnockout micePhosphorus productCalcium phosphate depositionHuman carriers
2009
Disorders of Phosphate Homeostasis and Tissue Mineralisation
Bergwitz C, Jüppner H. Disorders of Phosphate Homeostasis and Tissue Mineralisation. Endocrine Development 2009, 16: 133-156. PMID: 19494665, PMCID: PMC3810012, DOI: 10.1159/000223693.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsDisorders of phosphate homeostasisPhosphate homeostasisFibroblast growth factor 23Secretion of parathyroid hormoneAbnormal phosphate homeostasisDentin matrix protein 1Tissue mineralizationGrowth factor 23Co-receptor KlothoBone-kidney axisReabsorption of phosphateExpression of FGF23Renal proximal tubulesHomologies to endopeptidasesMatrix protein 1Phosphate-regulating geneCirculating phosphate concentrationClinical presentationFactor 23Parathyroid hormoneUDP-N-acetyl-alpha-D-galactosamineParathyroid glandsDiagnostic evaluationProximal tubulesD-galactosamine
2004
Brittle IV Mouse Model for Osteogenesis Imperfecta IV Demonstrates Postpubertal Adaptations to Improve Whole Bone Strength*
Kozloff KM, Carden A, Bergwitz C, Forlino A, Uveges TE, Morris MD, Marini JC, Goldstein SA. Brittle IV Mouse Model for Osteogenesis Imperfecta IV Demonstrates Postpubertal Adaptations to Improve Whole Bone Strength*. Journal Of Bone And Mineral Research 2004, 19: 614-622. PMID: 15005849, DOI: 10.1359/jbmr.040111.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAgingAmino Acid SubstitutionAnatomy, Cross-SectionalAnimalsBone DensityBone DevelopmentBone MatrixCollagen Type IDisease Models, AnimalFemurMaleMiceMice, TransgenicMineralsOsteogenesis ImperfectaRadiographySpectrum Analysis, RamanStress, MechanicalTensile StrengthConceptsMatrix material propertiesWhole bone geometryMaterial propertiesWhole bone strengthOsteogenesis imperfectaMouse modelBone geometryBone strengthMatrix compositesMechanical testsStiffness increaseType IV osteogenesis imperfectaMicroCT dataInvestigate therapeutic interventionsGeometric parametersMechanism independent of changesMouse model of OIRaman spectroscopic resultsMonths of ageMechanically tested to failureKnock-in modelOI patientsRaman spectroscopyGeometric resistanceIndependent of changes