2020
Importance of Dietary Phosphorus for Bone Metabolism and Healthy Aging
Serna J, Bergwitz C. Importance of Dietary Phosphorus for Bone Metabolism and Healthy Aging. Nutrients 2020, 12: 3001. PMID: 33007883, PMCID: PMC7599912, DOI: 10.3390/nu12103001.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsDietary phosphorusReduced bioavailabilityHealthy agingHigh dietary phosphorusSources of dietary phosphorusReduced longevityAbundance of phosphorusBone metabolismWestern dietPhosphorusTissue calcificationMetabolic changesEndocrine regulationBioavailabilityNormal amountsTissueCurrent knowledgeAbundanceDifferent tissuesExcessive lossOsteomalacia
2018
Role of phosphate sensing in bone and mineral metabolism
Chande S, Bergwitz C. Role of phosphate sensing in bone and mineral metabolism. Nature Reviews Endocrinology 2018, 14: 637-655. PMID: 30218014, PMCID: PMC8607960, DOI: 10.1038/s41574-018-0076-3.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsPi transportersSignal transductionPi homeostasisCellular phosphate homeostasisPhosphate homeostasisExpression of Pi transportersPi-sensing mechanismEssential structural componentIntracellular signal transductionPi transportMulticellular organismsInositol pyrophosphatesIntracellular Pi levelsDomain proteinsRegulation of FGF23 expressionPlasma membranePhosphate sensingDisorders of phosphate homeostasisCell metabolismExtracellular matrixCellular levelHomeostasisTransductionGenetic disordersOrganisms
2008
Cellular Mechanism of Decreased Bone in Brtl Mouse Model of OI: Imbalance of Decreased Osteoblast Function and Increased Osteoclasts and Their Precursors*
Uveges TE, Collin‐Osdoby P, Cabral WA, Ledgard F, Goldberg L, Bergwitz C, Forlino A, Osdoby P, Gronowicz GA, Marini JC. Cellular Mechanism of Decreased Bone in Brtl Mouse Model of OI: Imbalance of Decreased Osteoblast Function and Increased Osteoclasts and Their Precursors*. Journal Of Bone And Mineral Research 2008, 23: 1983-1994. PMID: 18684089, PMCID: PMC2686922, DOI: 10.1359/jbmr.080804.Peer-Reviewed Original ResearchConceptsColony-forming unitsRANKL/OPG ratioOsteogenesis imperfectaWildtype valuesCompared to wildtype miceSevere osteogenesis imperfectaReal-time RT-PCRMouse model of OIIncreases osteoclast precursorsBone-resorbing osteoclastsOI therapyKnock-in modelIncreased osteoclastsOsteoclast increaseMarrow culturesWildtype miceModel of OITRACP stainingOsteoblast functionOsteoclast precursorsCellular mechanismsBrtl miceOsteoclastsRT-PCRTRACP(+Genetic Evidence of Serum Phosphate-Independent Functions of FGF-23 on Bone
Sitara D, Kim S, Razzaque MS, Bergwitz C, Taguchi T, Schüler C, Erben RG, Lanske B. Genetic Evidence of Serum Phosphate-Independent Functions of FGF-23 on Bone. PLOS Genetics 2008, 4: e1000154. PMID: 18688277, PMCID: PMC2483943, DOI: 10.1371/journal.pgen.1000154.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone and BonesBone DensityCalcification, PhysiologicCells, CulturedFibroblast Growth Factor-23Fibroblast Growth FactorsGene ExpressionHypophosphatemiaMiceMice, Inbred C57BLMice, KnockoutMuscle, SkeletalOsteoblastsPhenotypePhosphatesSerumSkullSodium-Phosphate Cotransporter Proteins, Type IIaUrineConceptsFGF-23 geneFgf-23-/- micePhosphate homeostasisGenetic evidenceFgf-23-/-Regulation of phosphate homeostasisCrucial biological importanceFirst genetic evidenceSystemic phosphate homeostasisSkeletal mineralizationCellular functionsDouble mutantNew mouse lineMaster regulatorProtein abundanceGenomic ablationMolecular mechanismsDouble mutant miceChondrocyte differentiationTargeted disruptionSkeletal phenotypeBiological importanceGenesEnergy metabolismHomeostasis
1997
Cloning and characterization of the vitamin D receptor from Xenopus laevis.
Li Y, Bergwitz C, Jüppner H, Demay M. Cloning and characterization of the vitamin D receptor from Xenopus laevis. Endocrinology 1997, 138: 2347-53. PMID: 9165021, DOI: 10.1210/endo.138.6.5210.Peer-Reviewed Original ResearchMeSH KeywordsAgingAmino Acid SequenceAnimalsBase SequenceBone and BonesChickensCloning, MolecularDimerizationEmbryo, NonmammalianFemaleGene Expression Regulation, DevelopmentalHumansIntestine, SmallKidneyMiceMolecular Sequence DataOrgan SpecificityPolymerase Chain ReactionRatsReceptors, CalcitriolReceptors, Retinoic AcidRecombinant ProteinsRetinoic Acid Receptor alphaSequence Homology, Amino AcidSkinSpecies SpecificityXenopus laevisConceptsVitamin D response elementRat osteocalcin vitamin D response elementVitamin D receptorOsteocalcin vitamin D response elementLower vertebrate speciesMessenger RNA speciesHuman vitamin D receptorMouse retinoid X receptor alphaAmino acid residuesRetinoid X receptor alphaRat osteocalcin vitamin D responsive elementAmino acid levelsX receptor alphaVertebrate speciesRNA speciesMammalian cellsTransfected mammalian cellsXenopus developmentDependent transactivationD response elementNuclear receptor superfamilyXenopus tissuesDNA bindingIon homeostasisNorthern analysis