2024
Both enantiomers of β-aminoisobutyric acid BAIBA regulate Fgf23 via MRGPRD receptor by activating distinct signaling pathways in osteocytes
Sakamoto E, Kitase Y, Fitt A, Zhu Z, Awad K, Brotto M, White K, Welc S, Bergwitz C, Bonewald L. Both enantiomers of β-aminoisobutyric acid BAIBA regulate Fgf23 via MRGPRD receptor by activating distinct signaling pathways in osteocytes. Cell Reports 2024, 43: 114397. PMID: 38935499, PMCID: PMC11350516, DOI: 10.1016/j.celrep.2024.114397.Peer-Reviewed Original ResearchActivate distinct signaling pathwaysSignaling pathwayFibroblast growth factor 23Urinary phosphate excretionReceptor type DInduce FGF23Urine phosphateElevated FGF23Phosphate excretionFGF23L-BAIBAExercise-induced increasePhosphate homeostasisSclerostinPhosphate metabolismReceptorsD-enantiomerBonePathway
2019
Endocrine regulation of MFS2 by branchless controls phosphate excretion and stone formation in Drosophila renal tubules
Rose E, Lee D, Xiao E, Zhao W, Wee M, Cohen J, Bergwitz C. Endocrine regulation of MFS2 by branchless controls phosphate excretion and stone formation in Drosophila renal tubules. Scientific Reports 2019, 9: 8798. PMID: 31217461, PMCID: PMC6584732, DOI: 10.1038/s41598-019-45269-x.Peer-Reviewed Original ResearchConceptsDrosophila renal tubulesFly life spanGenetic ablationRNAi-mediated knockdownInorganic phosphate (Pi) homeostasisHigh-Pi mediumPi transportersAdult fliesControl of FGF signalingHigher speciesPi mediumInduces expressionMFS2FGF signalingExcretion of PiPhosphate homeostasisDrosophilaFly longevityEndocrine regulationHormone fibroblast growth factor 23Renal tubulesHormonal controlPi transportFibroblast growth factor 23Genetic overexpression
2018
Role of phosphate sensing in bone and mineral metabolism
Chande S, Bergwitz C. Role of phosphate sensing in bone and mineral metabolism. Nature Reviews Endocrinology 2018, 14: 637-655. PMID: 30218014, PMCID: PMC8607960, DOI: 10.1038/s41574-018-0076-3.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsPi transportersSignal transductionPi homeostasisCellular phosphate homeostasisPhosphate homeostasisExpression of Pi transportersPi-sensing mechanismEssential structural componentIntracellular signal transductionPi transportMulticellular organismsInositol pyrophosphatesIntracellular Pi levelsDomain proteinsRegulation of FGF23 expressionPlasma membranePhosphate sensingDisorders of phosphate homeostasisCell metabolismExtracellular matrixCellular levelHomeostasisTransductionGenetic disordersOrganisms
2012
Fanconi-Bickel Syndrome and Autosomal Recessive Proximal Tubulopathy with Hypercalciuria (ARPTH) Are Allelic Variants Caused by GLUT2 Mutations
Mannstadt M, Magen D, Segawa H, Stanley T, Sharma A, Sasaki S, Bergwitz C, Mounien L, Boepple P, Thorens B, Zelikovic I, Jüppner H. Fanconi-Bickel Syndrome and Autosomal Recessive Proximal Tubulopathy with Hypercalciuria (ARPTH) Are Allelic Variants Caused by GLUT2 Mutations. The Journal Of Clinical Endocrinology & Metabolism 2012, 97: e1978-e1986. PMID: 22865906, PMCID: PMC3462928, DOI: 10.1210/jc.2012-1279.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAmino Acid SequenceAnimalsFamilial Hypophosphatemic RicketsFamily HealthFanconi SyndromeFemaleGenes, RecessiveGenetic VariationGenome-Wide Association StudyGlucose Transporter Type 1Glucose Transporter Type 2HumansHypercalciuriaHypophosphatemia, FamilialKidney Tubules, ProximalMaleMiceMice, TransgenicMolecular Sequence DataOocytesPedigreeRicketsSodium-Phosphate Cotransporter Proteins, Type IIaSodium-Phosphate Cotransporter Proteins, Type IIcXenopus laevisConceptsGlucose transporter 2Sequence analysis of candidate genesCandidate genesSequence analysisGenome-wide linkage scanAnalysis of candidate genesFanconi-Bickel syndromeProximal renal tubulopathyRenal tubulopathyNucleotide sequence analysisGenetic mappingHomozygous mutationPhosphate importLinkage scanMolecular basisXenopus oocytesTransport of glucoseGLUT2 mutationsMolecular levelGenesGlucose transportUrinary phosphate excretionAllelic variantsPhosphate homeostasisDirect nucleotide sequence analysis
2011
Phosphate Sensing
Bergwitz C, Jüppner H. Phosphate Sensing. Advances In Kidney Disease And Health 2011, 18: 132-144. PMID: 21406298, PMCID: PMC3059779, DOI: 10.1053/j.ackd.2011.01.004.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsAmino acid sequence conservationNumerous cellular functionsMulti-protein complexesDifferent signal transduction cascadesSignal transduction cascadeExpression of genesSignal transduction cascadesEukaryotic organismsMulticellular organismsMetazoan cellsMetazoan orthologsSequence conservationCellular functionsPHO pathwayTransduction cascadePlasma membraneAmbient phosphateCell metabolismExtracellular phosphateYeastGrowth of tissuesPhosphate sensorPhosphate homeostasisPhosphate uptakeCirculating phosphate levels
2010
Regulation of Phosphate Homeostasis by PTH, Vitamin D, and FGF23
Bergwitz C, Jüppner H. Regulation of Phosphate Homeostasis by PTH, Vitamin D, and FGF23. Annual Review Of Medicine 2010, 61: 91-104. PMID: 20059333, PMCID: PMC4777331, DOI: 10.1146/annurev.med.051308.111339.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsParathyroid hormoneDentin matrix protein 1Regulation of phosphate homeostasisVitamin DPhosphate homeostasisFibroblast growth factor 23Serum phosphorus levelsGrowth factor 23Renal phosphate excretionSecretion of FGF23Secretion of parathyroid hormoneSodium-phosphate cotransporters NaPi-IIaCotransporter NaPi-IIaIncreases renal phosphate excretionGenetically engineered miceRegulation of calcium homeostasisHomologies to endopeptidasesKidney axisMatrix protein 1Sodium-phosphate cotransporter NaPi-IIaFactor 23Serum phosphorusPhosphate excretionParathyroid glandsHormonal bone-parathyroid-kidney axis
2009
Disorders of Phosphate Homeostasis and Tissue Mineralisation
Bergwitz C, Jüppner H. Disorders of Phosphate Homeostasis and Tissue Mineralisation. Endocrine Development 2009, 16: 133-156. PMID: 19494665, PMCID: PMC3810012, DOI: 10.1159/000223693.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsDisorders of phosphate homeostasisPhosphate homeostasisFibroblast growth factor 23Secretion of parathyroid hormoneAbnormal phosphate homeostasisDentin matrix protein 1Tissue mineralizationGrowth factor 23Co-receptor KlothoBone-kidney axisReabsorption of phosphateExpression of FGF23Renal proximal tubulesHomologies to endopeptidasesMatrix protein 1Phosphate-regulating geneCirculating phosphate concentrationClinical presentationFactor 23Parathyroid hormoneUDP-N-acetyl-alpha-D-galactosamineParathyroid glandsDiagnostic evaluationProximal tubulesD-galactosamine
2008
Genetic Evidence of Serum Phosphate-Independent Functions of FGF-23 on Bone
Sitara D, Kim S, Razzaque MS, Bergwitz C, Taguchi T, Schüler C, Erben RG, Lanske B. Genetic Evidence of Serum Phosphate-Independent Functions of FGF-23 on Bone. PLOS Genetics 2008, 4: e1000154. PMID: 18688277, PMCID: PMC2483943, DOI: 10.1371/journal.pgen.1000154.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone and BonesBone DensityCalcification, PhysiologicCells, CulturedFibroblast Growth Factor-23Fibroblast Growth FactorsGene ExpressionHypophosphatemiaMiceMice, Inbred C57BLMice, KnockoutMuscle, SkeletalOsteoblastsPhenotypePhosphatesSerumSkullSodium-Phosphate Cotransporter Proteins, Type IIaUrineConceptsFGF-23 geneFgf-23-/- micePhosphate homeostasisGenetic evidenceFgf-23-/-Regulation of phosphate homeostasisCrucial biological importanceFirst genetic evidenceSystemic phosphate homeostasisSkeletal mineralizationCellular functionsDouble mutantNew mouse lineMaster regulatorProtein abundanceGenomic ablationMolecular mechanismsDouble mutant miceChondrocyte differentiationTargeted disruptionSkeletal phenotypeBiological importanceGenesEnergy metabolismHomeostasis
2005
SLC34A3 Mutations in Patients with Hereditary Hypophosphatemic Rickets with Hypercalciuria Predict a Key Role for the Sodium-Phosphate Cotransporter NaPi-IIc in Maintaining Phosphate Homeostasis
Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabédian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Jüppner H. SLC34A3 Mutations in Patients with Hereditary Hypophosphatemic Rickets with Hypercalciuria Predict a Key Role for the Sodium-Phosphate Cotransporter NaPi-IIc in Maintaining Phosphate Homeostasis. American Journal Of Human Genetics 2005, 78: 179-192. PMID: 16358214, PMCID: PMC1380228, DOI: 10.1086/499409.Peer-Reviewed Original ResearchConceptsConsanguineous BedouinFirst membrane-spanning domainMembrane-spanning domainsPhosphate homeostasisRenal sodium-phosphate cotransporterNucleotide sequence analysisDihydroxyvitamin D levelsSingle nucleotide deletionHereditary hypophosphatemic ricketsCompound heterozygous missenseSLC34A3 mutationsHomozygous single nucleotide deletionHypophosphatemic ricketsLinkage scanCandidate genesGenomic DNASodium-phosphate cotransporterSequence analysisD levelsHomozygosity mappingDeletion mutationsGenomewide linkage scanKey roleChromosome 9q34Mutations