Defective O-Glycosylation due to a Novel Homozygous S129P Mutation Is Associated with Lack of Fibroblast Growth Factor 23 Secretion and Tumoral Calcinosis
Bergwitz C, Banerjee S, Abu-Zahra H, Kaji H, Miyauchi A, Sugimoto T, Jüppner H. Defective O-Glycosylation due to a Novel Homozygous S129P Mutation Is Associated with Lack of Fibroblast Growth Factor 23 Secretion and Tumoral Calcinosis. The Journal Of Clinical Endocrinology & Metabolism 2009, 94: 4267-4274. PMID: 19837926, PMCID: PMC2775647, DOI: 10.1210/jc.2009-0961.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino Acid SubstitutionAnimalsBase SequenceCalcinosisCarrier StateChlorocebus aethiopsCodonCOS CellsDNA PrimersExonsFibroblast Growth Factor-23Fibroblast Growth FactorsGlycosylationHomozygoteHumansHypophosphatemia, FamilialMolecular Sequence DataNeoplasmsPolymorphism, Single NucleotideProlineSerineConceptsExpression vectors encoding wild-typeSerine to prolineHomozygous mutationFraction of lysatesCOS-7 cellsGlycoprotein fractionDefective O-glycosylationMutant hormoneO-glycosylationProtein speciesExon 2Poor secretionCOS-7Western blot analysisGenetic causeCodon 129Hyperphosphatemic tumoral calcinosisMutationsWild-typeFGF23 mutationsAssociated with lackBlot analysisCarriers in vivoFibroblast growth factorLysates