Chunxiang Wu
Postdoctoral AssociateAbout
Titles
Postdoctoral Associate
Research
Research at a Glance
Yale Co-Authors
Frequent collaborators of Chunxiang Wu's published research.
Publications Timeline
A big-picture view of Chunxiang Wu's research output by year.
Yong Xiong, PhD
Chenxiang Lin, PhD
C. Patrick Lusk, PhD
Craig B. Wilen, MD, PhD
Guilin Wang, PhD
Longfei Liu
9Publications
236Citations
Publications
2024
Channel width modulates the permeability of DNA origami–based nuclear pore mimics
Feng Q, Saladin M, Wu C, Cao E, Zheng W, Zhang A, Bhardwaj P, Li X, Shen Q, Kapinos L, Kozai T, Mariappan M, Lusk C, Xiong Y, Lim R, Lin C. Channel width modulates the permeability of DNA origami–based nuclear pore mimics. Science Advances 2024, 10: eadq8773. PMID: 39536094, PMCID: PMC11559598, DOI: 10.1126/sciadv.adq8773.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsStructural insights into PPP2R5A degradation by HIV-1 Vif
Hu Y, Delviks-Frankenberry K, Wu C, Arizaga F, Pathak V, Xiong Y. Structural insights into PPP2R5A degradation by HIV-1 Vif. Nature Structural & Molecular Biology 2024, 31: 1492-1501. PMID: 38789685, DOI: 10.1038/s41594-024-01314-6.Peer-Reviewed Original ResearchAltmetricConceptsHost-virus protein interactionsCullin RING E3 ubiquitin ligasesInduced G2/M cell cycle arrestSets of proteinsG2/M cell cycle arrestSubstrate-binding siteCryogenic-electron microscopy structuresProtein phosphatase 2ADegradation-independent mechanismCell cycle arrestUbiquitin ligaseProtein interactionsPhosphatase 2AAntiviral proteinCycle arrestDegradation-dependentA-resolutionHIV-1 VifPPP2R5AStructural insightsDiverse interactionsProteinCellular studiesPhosphatase activityPotential target
2023
The capsid lattice engages a bipartite NUP153 motif to mediate nuclear entry of HIV-1 cores
Shen Q, Kumari S, Xu C, Jang S, Shi J, Burdick R, Levintov L, Xiong Q, Wu C, Devarkar S, Tian T, Tripler T, Hu Y, Yuan S, Temple J, Feng Q, Lusk C, Aiken C, Engelman A, Perilla J, Pathak V, Lin C, Xiong Y. The capsid lattice engages a bipartite NUP153 motif to mediate nuclear entry of HIV-1 cores. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2202815120. PMID: 36943880, PMCID: PMC10068764, DOI: 10.1073/pnas.2202815120.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsHIV-1 capsidC-terminal tail regionTriple arginine motifNuclear pore complexPhenylalanine-glycine motifsBipartite motifNuclear importPore complexNuclear poresNuclear entryNup153Capsid latticeInteraction moduleProtein latticeCA assemblyCA hexamersIntact capsidsNucleoporinsHIV-1 coreMotifCapsidTail regionIntact formInfection studiesMechanistic evidenceEnrich and switch: IP6 and maturation of HIV-1 capsid
Wu C, Xiong Y. Enrich and switch: IP6 and maturation of HIV-1 capsid. Nature Structural & Molecular Biology 2023, 30: 239-241. PMID: 36849641, PMCID: PMC10033439, DOI: 10.1038/s41594-023-00940-w.Commentaries, Editorials and LettersCitationsAltmetricMeSH KeywordsModeling HIV-1 nuclear entry with nucleoporin-gated DNA-origami channels
Shen Q, Feng Q, Wu C, Xiong Q, Tian T, Yuan S, Shi J, Bedwell G, Yang R, Aiken C, Engelman A, Lusk C, Lin C, Xiong Y. Modeling HIV-1 nuclear entry with nucleoporin-gated DNA-origami channels. Nature Structural & Molecular Biology 2023, 30: 425-435. PMID: 36807645, PMCID: PMC10121901, DOI: 10.1038/s41594-023-00925-9.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsNuclear pore complexHIV-1 nuclear entryNuclear entryNuclear importNPC central channelPore complexHost nucleusCapsid dockingVirus genomeAffinity gradientNup153Central channelMechanistic insightsMolecular interactionsCapsidNucleoporinsNup358Nup62GenomeNucleusVirusDockingVirus-1 infectionImportComplexes
2022
Functionalized DNA-Origami-Protein Nanopores Generate Large Transmembrane Channels with Programmable Size-Selectivity
Shen Q, Xiong Q, Zhou K, Feng Q, Liu L, Tian T, Wu C, Xiong Y, Melia T, Lusk C, Lin C. Functionalized DNA-Origami-Protein Nanopores Generate Large Transmembrane Channels with Programmable Size-Selectivity. Journal Of The American Chemical Society 2022, 145: 1292-1300. PMID: 36577119, PMCID: PMC9852090, DOI: 10.1021/jacs.2c11226.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsExchange of macromoleculesCholesterol-rich membranesHybrid nanoporesSynthetic biologyBiophysical toolsSynthetic cellsTransmembrane channelsTransmembrane nanoporesDNA ringsProtein nanoporeCell membraneBacterial toxinsDNA origami techniqueLipid membranesAnalytical chemistryMacromolecule sizeDNA origamiMembraneProgrammable sizeNanoporesSized poresNucleoporinsAverage inner diameterCellsPneumolysinMonospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617
Peng L, Hu Y, Mankowski MC, Ren P, Chen RE, Wei J, Zhao M, Li T, Tripler T, Ye L, Chow RD, Fang Z, Wu C, Dong MB, Cook M, Wang G, Clark P, Nelson B, Klein D, Sutton R, Diamond MS, Wilen CB, Xiong Y, Chen S. Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617. Nature Communications 2022, 13: 1638. PMID: 35347138, PMCID: PMC8960874, DOI: 10.1038/s41467-022-29288-3.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsSARS-CoV-2Authentic SARS-CoV-2Effective therapeutic optionPotent SARS-CoV-2SARS-CoV-2 variantsVariants of concernRepertoire of therapeuticsBreakthrough infectionsTherapeutic optionsMultiple vaccinesPathogen SARS-CoV-2Delta variantB cellsPotent efficacyHumanized antibodyDistinct epitopesBispecific antibodiesOriginal virusSpike receptorStrong inhibitory activityMonoclonal antibodiesAntibodiesStrong potencyLead clonesLead antibodies
2021
Nuclear Import of HIV-1
Shen Q, Wu C, Freniere C, Tripler TN, Xiong Y. Nuclear Import of HIV-1. Viruses 2021, 13: 2242. PMID: 34835048, PMCID: PMC8619967, DOI: 10.3390/v13112242.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsCitationsAltmetricMeSH Keywords and ConceptsFunctional landscape of SARS-CoV-2 cellular restriction
Martin-Sancho L, Lewinski MK, Pache L, Stoneham CA, Yin X, Becker ME, Pratt D, Churas C, Rosenthal SB, Liu S, Weston S, De Jesus PD, O'Neill AM, Gounder AP, Nguyen C, Pu Y, Curry HM, Oom AL, Miorin L, Rodriguez-Frandsen A, Zheng F, Wu C, Xiong Y, Urbanowski M, Shaw ML, Chang MW, Benner C, Hope TJ, Frieman MB, García-Sastre A, Ideker T, Hultquist JF, Guatelli J, Chanda SK. Functional landscape of SARS-CoV-2 cellular restriction. Molecular Cell 2021, 81: 2656-2668.e8. PMID: 33930332, PMCID: PMC8043580, DOI: 10.1016/j.molcel.2021.04.008.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAnimalsAntigens, CDBinding SitesCell Line, TumorChlorocebus aethiopsEndoplasmic ReticulumGene Expression RegulationGolgi ApparatusGPI-Linked ProteinsHEK293 CellsHost-Pathogen InteractionsHumansImmunity, InnateInterferon Regulatory FactorsInterferon Type IMolecular Docking SimulationProtein BindingProtein Conformation, alpha-HelicalProtein Conformation, beta-StrandProtein Interaction Domains and MotifsSARS-CoV-2Signal TransductionVero CellsViral ProteinsVirus InternalizationVirus ReleaseVirus ReplicationConceptsAcute respiratory syndrome coronavirus 2 infectionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionSARS-CoV-1 infectionSyndrome coronavirus 2 infectionSevere coronavirus disease 2019SARS-CoV-2 infectionCoronavirus 2 infectionInnate immune controlCoronavirus disease 2019Potential therapeutic strategySARS-CoV-2BST2/tetherinImmune controlSet of ISGsDisease 2019Host determinantsTherapeutic strategiesViral infectionAntiviral ISGsDisease severityViral replicationInterferon responseViral entryIFN controlInfection