2020
An improved and highly selective fluorescence assay for measuring phosphatidylserine decarboxylase activity Fluorescence detection of PS decarboxylase activity
Choi JY, Black R, Lee H, Di Giovanni J, Murphy RC, Ben Mamoun C, Voelker DR. An improved and highly selective fluorescence assay for measuring phosphatidylserine decarboxylase activity Fluorescence detection of PS decarboxylase activity. Journal Of Biological Chemistry 2020, 295: 9211-9222. PMID: 32430397, PMCID: PMC7335775, DOI: 10.1074/jbc.ra120.013421.Peer-Reviewed Original Research
2008
Disruption of the Plasmodium falciparum PfPMT Gene Results in a Complete Loss of Phosphatidylcholine Biosynthesis via the Serine-Decarboxylase-Phosphoethanolamine-Methyltransferase Pathway and Severe Growth and Survival Defects*
Witola WH, El Bissati K, Pessi G, Xie C, Roepe PD, Mamoun CB. Disruption of the Plasmodium falciparum PfPMT Gene Results in a Complete Loss of Phosphatidylcholine Biosynthesis via the Serine-Decarboxylase-Phosphoethanolamine-Methyltransferase Pathway and Severe Growth and Survival Defects*. Journal Of Biological Chemistry 2008, 283: 27636-27643. PMID: 18694927, PMCID: PMC2562060, DOI: 10.1074/jbc.m804360200.Peer-Reviewed Original ResearchConceptsSDPM pathwayBiosynthesis of phosphatidylcholinePhosphatidylcholine biosynthesisParasite growthMajor membrane phospholipidsHuman malaria parasiteHost serineSerine decarboxylaseGenetic evidenceMethyltransferase enzymeSurvival defectGene resultsYeast cellsMethylation of phosphatidylethanolamineBiosynthesisSynthesis of phosphatidylcholineBiochemical studiesMembrane phospholipidsMalaria parasitesPlasmodium parasitesSevere growthPathwaySignificant defectsParasitesComplete loss