2023
Maturation of the malarial phosphatidylserine decarboxylase is mediated by high affinity binding to anionic phospholipids
Choi J, Lopes L, Mamoun C, Voelker D. Maturation of the malarial phosphatidylserine decarboxylase is mediated by high affinity binding to anionic phospholipids. Journal Of Biological Chemistry 2023, 299: 104659. PMID: 36997087, PMCID: PMC10172927, DOI: 10.1016/j.jbc.2023.104659.Peer-Reviewed Original ResearchConceptsPS decarboxylase
2020
An improved and highly selective fluorescence assay for measuring phosphatidylserine decarboxylase activity Fluorescence detection of PS decarboxylase activity
Choi JY, Black R, Lee H, Di Giovanni J, Murphy RC, Ben Mamoun C, Voelker DR. An improved and highly selective fluorescence assay for measuring phosphatidylserine decarboxylase activity Fluorescence detection of PS decarboxylase activity. Journal Of Biological Chemistry 2020, 295: 9211-9222. PMID: 32430397, PMCID: PMC7335775, DOI: 10.1074/jbc.ra120.013421.Peer-Reviewed Original Research
2011
Phosphoethanolamine methyltransferases in phosphocholine biosynthesis: functions and potential for antiparasite therapy
Bobenchik AM, Augagneur Y, Hao B, Hoch JC, Mamoun C. Phosphoethanolamine methyltransferases in phosphocholine biosynthesis: functions and potential for antiparasite therapy. FEMS Microbiology Reviews 2011, 35: 609-619. PMID: 21303393, PMCID: PMC4107886, DOI: 10.1111/j.1574-6976.2011.00267.x.Peer-Reviewed Original ResearchConceptsStress-resistant plantsImportant biochemical stepHuman malaria parasiteMethyl donor SAMPhosphocholine biosynthesisN-methyltransferasesFlorida lanceletDependent methyltransferasesNuclear divisionBiochemical stepsDependent methylationBiological functionsGene expressionGenetic characterizationDevelopment of therapiesMalaria parasitesMajor phospholipidsDiverse groupEnzymeSmall moleculesPlantsAntiparasite therapyEukaryotesPhosphoethanolamineMethyltransferases
2004
A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation
Pessi G, Kociubinski G, Mamoun CB. A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 6206-6211. PMID: 15073329, PMCID: PMC395947, DOI: 10.1073/pnas.0307742101.Peer-Reviewed Original Research