2023
Dual-Domain Iterative Network with Adaptive Data Consistency for Joint Denoising and Few-Angle Reconstruction of Low-Dose Cardiac SPECT
Chen X, Zhou B, Xie H, Guo X, Liu Q, Sinusas A, Liu C. Dual-Domain Iterative Network with Adaptive Data Consistency for Joint Denoising and Few-Angle Reconstruction of Low-Dose Cardiac SPECT. Lecture Notes In Computer Science 2023, 14307: 49-59. DOI: 10.1007/978-3-031-44917-8_5.Peer-Reviewed Original ResearchIterative networkAuxiliary modulesJoint denoisingLow reconstruction accuracySource codeData consistencyNetwork performanceAblation studiesReconstruction accuracyCardiac SPECTConsistency moduleHardware expensePrediction accuracyAngle reconstructionNetworkDenoisingImage noiseAngle projectionsModuleADC moduleAccuracyReconstructionImagesMPI dataCodeDuSFE: Dual-Channel Squeeze-Fusion-Excitation co-attention for cross-modality registration of cardiac SPECT and CT
Chen X, Zhou B, Xie H, Guo X, Zhang J, Duncan J, Miller E, Sinusas A, Onofrey J, Liu C. DuSFE: Dual-Channel Squeeze-Fusion-Excitation co-attention for cross-modality registration of cardiac SPECT and CT. Medical Image Analysis 2023, 88: 102840. PMID: 37216735, PMCID: PMC10524650, DOI: 10.1016/j.media.2023.102840.Peer-Reviewed Original ResearchConceptsCross-modality registrationConvolutional layersCo-attention mechanismMultiple convolutional layersCo-attention moduleDifferent convolutional layersMedical image registrationInput data streamDeep learning strategiesLow registration errorIntensity-based registration methodCardiac SPECTΜ-mapsDeep learningFeature fusionData streamsInput imageSource codeFeature mapsNeural networkImage registrationSpatial featuresRegistration performanceRegistration methodInput informationSegmentation-Free PVC for Cardiac SPECT Using a Densely-Connected Multi-Dimensional Dynamic Network
Xie H, Liu Z, Shi L, Greco K, Chen X, Zhou B, Feher A, Stendahl J, Boutagy N, Kyriakides T, Wang G, Sinusas A, Liu C. Segmentation-Free PVC for Cardiac SPECT Using a Densely-Connected Multi-Dimensional Dynamic Network. IEEE Transactions On Medical Imaging 2023, 42: 1325-1336. PMID: 36459599, PMCID: PMC10204821, DOI: 10.1109/tmi.2022.3226604.Peer-Reviewed Original Research
2022
Dual-Branch Squeeze-Fusion-Excitation Module for Cross-Modality Registration of Cardiac SPECT and CT
Chen X, Zhou B, Xie H, Guo X, Zhang J, Sinusas A, Onofrey J, Liu C. Dual-Branch Squeeze-Fusion-Excitation Module for Cross-Modality Registration of Cardiac SPECT and CT. Lecture Notes In Computer Science 2022, 13436: 46-55. DOI: 10.1007/978-3-031-16446-0_5.Peer-Reviewed Original ResearchConvolutional neural networkCross-modality registrationFeature fusionPrevious convolutional neural networkEarly feature fusionCross-modality informationMultiple convolutional layersMedical image registrationLow registration errorCardiac SPECTConvolutional layersCNN moduleImage featuresLate fusionSource codeNeural networkExcitation moduleInput modalitiesImage registrationSpatial featuresMultiple modalitiesRegistration errorPrevious methodsRigid registrationNetwork
2021
Investigation of Direct and Indirect Approaches of Deep-Learning-Based Attenuation Correction for General Purpose and Dedicated Cardiac SPECT Scanners
Chen X, Zhou B, Xie H, Shi L, Liu H, Liu C. Investigation of Direct and Indirect Approaches of Deep-Learning-Based Attenuation Correction for General Purpose and Dedicated Cardiac SPECT Scanners. 2021, 00: 1-2. DOI: 10.1109/nss/mic44867.2021.9875517.Peer-Reviewed Original ResearchNovel neural networkConventional U-NetMulti-channel inputDeep learningU-NetAttenuation mapNeural networkMap generationCardiac SPECTGeneral purposeSuperior performanceImagesDatasetIterative reconstructionAttenuation-corrected imagesCT transmission scanningAveraged errorNovel methodParallel-hole SPECTAttenuation correctionSPECT scannerMapsEmission imagesDirect approachScanner