2007
Oscillatory firing of dopamine neurons: Differences between cells in the substantia nigra and ventral tegmental area
Zhang D, Yang S, Jin G, Bunney B, Shi W. Oscillatory firing of dopamine neurons: Differences between cells in the substantia nigra and ventral tegmental area. Synapse 2007, 62: 169-175. PMID: 18081182, DOI: 10.1002/syn.20479.Peer-Reviewed Original ResearchConceptsVentral tegmental areaDA neuronsSubstantia nigraDopamine neuronsTegmental areaSlow oscillationsChloral hydrate-anesthetized ratsSN DA neuronsVTA DA neuronsDegree of burstingVariability of firingAfferent inputAdjacent substantia nigraOscillatory firingFiring rateNeuronsNeuronal oscillationsNigraCellsFiringRatsBrainImportant roleFunctional Coupling between the Prefrontal Cortex and Dopamine Neurons in the Ventral Tegmental Area
Gao M, Liu C, Yang S, Jin G, Bunney B, Shi W. Functional Coupling between the Prefrontal Cortex and Dopamine Neurons in the Ventral Tegmental Area. Journal Of Neuroscience 2007, 27: 5414-5421. PMID: 17507563, PMCID: PMC6672349, DOI: 10.1523/jneurosci.5347-06.2007.Peer-Reviewed Original ResearchConceptsVentral tegmental areaVTA DA neuronsDA neuronsPrefrontal cortexPFC neuronsDopamine neuronsTegmental areaAction potential-dependent DA releaseSlow oscillationsChloral hydrate-anesthetized ratsIntra-PFC infusionsFunctional couplingPFC terminalsVTA DAGlutamate releaseDA releaseExcitatory influenceRelay neuronsInhibitory influenceCell activityBrain functionNeuronsImportant new insightsCortexMultiple pathwaysClozapine Blocks D-Amphetamine-Induced Excitation of Dopamine Neurons in the Ventral Tegmental Area
Shi W, Zhang X, Pun C, Bunney B. Clozapine Blocks D-Amphetamine-Induced Excitation of Dopamine Neurons in the Ventral Tegmental Area. Neuropsychopharmacology 2007, 32: 1922-1928. PMID: 17299514, DOI: 10.1038/sj.npp.1301334.Peer-Reviewed Original ResearchConceptsD2-like receptorsDA neuronsVentral tegmental areaD-amphetamineDA receptorsExcitatory effectsTegmental areaΑ1 receptor antagonist prazosinAtypical antipsychotic drug clozapineChloral hydrate-anesthetized ratsTypical antipsychotic drug haloperidolCentral dopamine transmissionCurrent antipsychotic drugsReceptor antagonist prazosinAntipsychotic drug haloperidolAntipsychotic drug clozapineAntagonist prazosinExcitatory pathwaysDA transmissionDopamine neuronsΑ1 receptorsSystemic administrationAntipsychotic drugsExcitatory inputsIncomplete blockade
2000
Anatomic basis of sequence‐dependent predictability exhibited by nigral dopamine neuron firing patterns
Hoffman R, Shi W, Bunney B. Anatomic basis of sequence‐dependent predictability exhibited by nigral dopamine neuron firing patterns. Synapse 2000, 39: 133-138. PMID: 11180500, DOI: 10.1002/1098-2396(200102)39:2<133::aid-syn4>3.0.co;2-k.Peer-Reviewed Original Research
1999
Endogenous DA‐mediated feedback inhibition of DA neurons: Involvement of both D1‐ and D2‐like receptors
Shi W, Pun C, Smith P, Bunney B. Endogenous DA‐mediated feedback inhibition of DA neurons: Involvement of both D1‐ and D2‐like receptors. Synapse 1999, 35: 111-119. PMID: 10611636, DOI: 10.1002/(sici)1098-2396(200002)35:2<111::aid-syn3>3.0.co;2-7.Peer-Reviewed Original ResearchConceptsDA neuronsLike receptorsDA cellsEndogenous DAChloral hydrate-anesthetized ratsNigral DA cellsD2-like receptorsSingle-unit recordingsCerveau isolé preparationFeedback inhibitionParkinsonian animalsAntagonist racloprideAntagonist SCH23390DA releaseEndogenous dopamineD-amphetamineParkinson's diseaseUnit recordingsSCH23390Receptor activationBaseline activityReceptorsChloral hydrateNeuronsConcurrent activationOpposite modulation of cortical N-methyl-d-aspartate receptor-mediated responses by low and high concentrations of dopamine
Zheng P, Zhang X, Bunney B, Shi W. Opposite modulation of cortical N-methyl-d-aspartate receptor-mediated responses by low and high concentrations of dopamine. Neuroscience 1999, 91: 527-535. PMID: 10366010, DOI: 10.1016/s0306-4522(98)00604-6.Peer-Reviewed Original ResearchMeSH Keywords1-Methyl-3-isobutylxanthine2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepineAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsBenzazepinesDizocilpine MaleateDopamineDopamine AgonistsDopamine AntagonistsDose-Response Relationship, DrugExcitatory Amino Acid AntagonistsIn Vitro TechniquesMaleMembrane PotentialsPrefrontal CortexPyramidal CellsQuinoxalinesQuinpiroleRatsRats, Sprague-DawleyReceptors, N-Methyl-D-AspartateConceptsN-methyl-D-aspartate functionN-methyl-D-aspartate currentsN-methyl-D-aspartate (NMDA) receptor-mediated transmissionN-methyl-D-aspartate receptor-mediated responsesN-methyl-D-aspartate receptorsHigh concentrations dopamineReceptor-mediated transmissionD2 agonist quinpiroleD1 agonist SKF38393D-aspartate antagonistD1-like receptorsGlutamate-mediated neurotransmissionD2-like receptorsPresence of tetrodotoxinEffects of dopamineReceptor-mediated responsesWhole-cell recordingsD-aspartate agonistMedial prefrontal cortexBrief local applicationDizocilpine maleateAgonist SKF38393Concentration of dopamineCortical dopamineGlutamate transmission
1997
D1–D2 Interaction in Feedback Control of Midbrain Dopamine Neurons
Shi W, Smith P, Pun C, Millet B, Bunney B. D1–D2 Interaction in Feedback Control of Midbrain Dopamine Neurons. Journal Of Neuroscience 1997, 17: 7988-7994. PMID: 9315916, PMCID: PMC6793911, DOI: 10.1523/jneurosci.17-20-07988.1997.Peer-Reviewed Original ResearchConceptsD2-like receptorsDA cellsDA autoreceptorsDA neuronsD1 agonistLow dosesDopamine D1-like receptorsD1 inhibitionD1 effectNigral DA cellsMidbrain DA neuronsD2 agonist quinpiroleD1-like receptorsDA receptor subtypesMidbrain dopamine neuronsOnly low dosesDA receptorsEndogenous DAAgonist quinpiroleD2 agonistIntranigral applicationDopamine neuronsReceptor subtypesRat preparationTarget neuronsCharacterization of dopamine‐induced depolarization of prefrontal cortical neurons
Shi W, Zheng P, Liang X, Bunney B. Characterization of dopamine‐induced depolarization of prefrontal cortical neurons. Synapse 1997, 26: 415-422. PMID: 9215600, DOI: 10.1002/(sici)1098-2396(199708)26:4<415::aid-syn9>3.0.co;2-9.Peer-Reviewed Original ResearchConceptsEffects of dopaminePFC neuronsDA agonistsPrefrontal cortexAtypical antipsychotic drug clozapinePrefrontal cortical neuronsRat brain slicesAntipsychotic drug clozapineWhole-cell recordingsPFC pyramidal cellsSynaptic blockadeDA receptorsBeta antagonistDA antagonistsSubstantia nigraCortical neuronsPyramidal cellsBrain slicesDrug clozapineCell recordingsNeuronsAntagonistNonspecific mechanismsDopamineDepolarizationDopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs
Grace A, Bunney B, Moore H, Todd C. Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends In Neurosciences 1997, 20: 31-37. PMID: 9004417, DOI: 10.1016/s0166-2236(96)10064-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntipsychotic AgentsDopamineDopamine AgonistsMembrane PotentialsModels, NeurologicalConceptsDepolarization blockAntipsychotic drugsDopamine systemNigrostriatal dopamine systemWeeks of treatmentExtrapyramidal side effectsAntipsychotic drug efficacyDopamine receptor antagonistDrug treatment resultsMesolimbic dopamine neuronsTreatment of schizophreniaDopamine neuron firingReceptor blockadeDopamine neuronsTherapeutic impactSide effectsClinical actionsDrug AdministrationTherapeutic efficacyTreatment resultsDrug efficacyTherapeutic actionPotential mechanismsDrugsEfficacy
1996
Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons.
Sklair-Tavron L, Shi W, Lane S, Harris H, Bunney B, Nestler E. Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proceedings Of The National Academy Of Sciences Of The United States Of America 1996, 93: 11202-11207. PMID: 8855333, PMCID: PMC38308, DOI: 10.1073/pnas.93.20.11202.Peer-Reviewed Original ResearchConceptsVTA dopamine neuronsVentral tegmental areaChronic morphine treatmentDopamine neuronsMorphine treatmentBrain regionsBrain-derived neurotrophic factorIntra-VTA infusionMorphine-treated ratsOpioid receptor antagonistChronic opiate exposureMesolimbic dopamine neuronsFluorescent dye Lucifer yellowMesolimbic dopamine functionMesolimbic dopamine systemImportant neural substrateDye Lucifer yellowNondopaminergic neuronsVTA neuronsChronic morphineOpiate exposureConcomitant treatmentDopaminergic neuronsNeurotrophic factorReceptor antagonist
1995
Psychiatric status after human fetal mesencephalic tissue transplantation in Parkinson's disease
Price L, Spencer D, Marek K, Robbins R, Leranth C, Farhi A, Naftolin F, Roth R, Bunney B, Hoffer P, Makuch R, Redmond D. Psychiatric status after human fetal mesencephalic tissue transplantation in Parkinson's disease. Biological Psychiatry 1995, 38: 498-505. PMID: 8562661, DOI: 10.1016/0006-3223(95)00129-5.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedBrain Tissue TransplantationCaudate NucleusDepressive DisorderDopamineFemaleFetal Tissue TransplantationFollow-Up StudiesHumansMaleMesencephalonMiddle AgedNeurocognitive DisordersNeuropsychological TestsPanic DisorderParkinson DiseasePostoperative ComplicationsProspective StudiesConceptsParkinson's diseasePsychiatric statusHuman fetal mesencephalic tissueAdrenal medullary graftsAdrenal medullary transplantationFetal mesencephalic tissueSystematic psychiatric assessmentPerioperative sequelaeMesencephalic tissuePsychiatric sequelaeCaudate nucleusPsychiatric assessmentNeurobiological effectsBehavioral symptomsTissue transplantationDiseasePatientsTransplantationSequelaeSuch episodesEpisodesGroup effectsStatusDeliriumDiscrete episodesNonlinear sequence-dependent structure of nigral dopamine neuron interspike interval firing patterns
Hoffman R, Shi W, Bunney B. Nonlinear sequence-dependent structure of nigral dopamine neuron interspike interval firing patterns. Biophysical Journal 1995, 69: 128-137. PMID: 7669889, PMCID: PMC1236231, DOI: 10.1016/s0006-3495(95)79882-4.Peer-Reviewed Original ResearchConceptsNonlinear deterministic structureDeterministic structureNumber of degreesDopamine neuronsDynamical analysisEffect of nonstationarityRandom processFiring patternsNigral dopamine neuronsRat substantia nigraSubstantia nigraSynaptic inputsISI sequencesNeuron responsesTime seriesNeural circuit interactionsSequence-dependent structureNeuronsFiring modesCircuit interactionsOverall predictabilityNonstationarity
1994
The NMDA glycine site antagonist (+)-HA-966 selectively regulates conditioned stress-induced metabolic activation of the mesoprefrontal cortical dopamine but not serotonin systems: a behavioral, neuroendocrine, and neurochemical study in the rat
Goldstein L, Rasmusson A, Bunney B, Roth R. The NMDA glycine site antagonist (+)-HA-966 selectively regulates conditioned stress-induced metabolic activation of the mesoprefrontal cortical dopamine but not serotonin systems: a behavioral, neuroendocrine, and neurochemical study in the rat. Journal Of Neuroscience 1994, 14: 4937-4950. PMID: 8046462, PMCID: PMC6577203, DOI: 10.1523/jneurosci.14-08-04937.1994.Peer-Reviewed Original ResearchConceptsStress-induced increaseNMDA glycine-site antagonistsDA utilizationGlycine modulatory siteGlycine site antagonistHA-966Conditioned stressPrefrontal cortexCortical dopamineSite antagonistNucleus accumbensControl animalsModulatory siteMedial prefrontal cortical dopamineLateral prefrontal cortexPrefrontal cortical dopamineSerum corticosterone levelsNMDA receptor complexPost-traumatic stress disorderMedial prefrontal cortexNeurotransmitter ratiosRegional dopamineSerotonin utilizationSerum corticosteroneNMDA receptorsPreferential activation of dopamine overflow in prefrontal cortex produced by chronic clozapine treatment
Youngren K, Moghaddam B, Bunney B, Roth R. Preferential activation of dopamine overflow in prefrontal cortex produced by chronic clozapine treatment. Neuroscience Letters 1994, 165: 41-44. PMID: 8015734, DOI: 10.1016/0304-3940(94)90704-8.Peer-Reviewed Original ResearchConceptsMedial prefrontal cortexChronic treatmentNucleus accumbensPrefrontal cortexChronic clozapine treatmentBasal dopamine releaseExtracellular dopamine levelsChronic clozapineClozapine treatmentIntracerebral microdialysisAcute doseDopaminergic toneDopamine levelsDopamine releaseExtracellular dopamineRat striatumDopamine overflowClozapineBrain regionsPreferential activationStriatumAccumbensCortexTreatmentMicrodialysis
1993
Depolarization inactivation of dopamine neurons: Terminal release characteristics
Moghaddam B, Bunney B. Depolarization inactivation of dopamine neurons: Terminal release characteristics. Synapse 1993, 14: 195-200. PMID: 8105547, DOI: 10.1002/syn.890140302.Peer-Reviewed Original ResearchConceptsExtracellular dopamine levelsChronic haloperidol treatmentDopamine levelsHaloperidol treatmentExtracellular levelsPerfusion of tetrodotoxinExcitatory amino acidsStriatal extracellular levelsVehicle-treated animalsExtracellular glutamate levelsHaloperidol-treated animalsMedial forebrain bundleStriatal dopamine systemGroups of animalsExogenous antagonistsChronic haloperidolChronic treatmentDepolarization inactivationExcitatory actionBasal outflowDopamine neuronsGlutamate levelsImpulse flowForebrain bundleMicrodialysis techniqueIn vivo assessment of basal and drug‐induced dopamine release in cortical and subcortical regions of the anesthetized primate
Moghaddam B, Berridge C, Goldman‐Rakic P, Bunney B, Roth R. In vivo assessment of basal and drug‐induced dopamine release in cortical and subcortical regions of the anesthetized primate. Synapse 1993, 13: 215-222. PMID: 8497807, DOI: 10.1002/syn.890130304.Peer-Reviewed Original ResearchConceptsExtracellular dopamine levelsBasal extracellular dopamine levelsDopamine levelsPrefrontal cortexPremotor cortexDrug-induced dopamine releaseVivo assessmentExtracellular concentrationNonhuman primatesBasal extracellular concentrationsCaudate-putamen areaFeasibility of microdialysisCortex of primatesMedial prefrontal cortexDorsolateral prefrontal cortexCortical dopamineIntracerebral microdialysisIntravenous administrationNeurological illnessDopamine releaseSubcortical areasCortical areasDopamine projectionsDopamine systemSubcortical regionsCellular replacement of dopamine deficit in Parkinson's disease using human fetal mesencephalic tissue: preliminary results in four patients.
Redmond D, Robbins R, Naftolin F, Marek K, Vollmer T, Leranth C, Roth R, Price L, Gjedde A, Bunney B. Cellular replacement of dopamine deficit in Parkinson's disease using human fetal mesencephalic tissue: preliminary results in four patients. Proceedings Of The Association For Research In Nervous And Mental Disease 1993, 71: 325-59. PMID: 8417471.Peer-Reviewed Original Research
1992
Unilateral Transplantation of Human Fetal Mesencephalic Tissue into the Caudate Nucleus of Patients with Parkinson's Disease
Spencer D, Robbins R, Naftolin F, Marek K, Vollmer T, Leranth C, Roth R, Price L, Gjedde A, Bunney B, Sass K, Elsworth J, Kier E, Makuch R, Hoffer P, Redmond D. Unilateral Transplantation of Human Fetal Mesencephalic Tissue into the Caudate Nucleus of Patients with Parkinson's Disease. New England Journal Of Medicine 1992, 327: 1541-1548. PMID: 1435880, DOI: 10.1056/nejm199211263272201.Peer-Reviewed Original ResearchMeSH KeywordsActivities of Daily LivingAdultAntiparkinson AgentsCaudate NucleusCryopreservationCyclosporineDopamineFemaleFetal Tissue TransplantationHomovanillic AcidHumansMagnetic Resonance ImagingMaleMesencephalonMiddle AgedMotor ActivityParkinson DiseasePutamenStereotaxic TechniquesTomography, Emission-ComputedConceptsCase patientsParkinson's diseaseMesencephalic tissueCaudate nucleusHuman fetal ventral mesencephalic tissueFetal ventral mesencephalic tissueHuman fetal mesencephalic tissueContinued disease progressionFetal dopaminergic neuronsFetal mesencephalic tissueVentral mesencephalic tissueSevere Parkinson's diseaseOptimal drug therapySigns of parkinsonismMidbrain dopamine neuronsPositron emission tomographyMonths of evaluationAntiparkinsonian medicationUnilateral transplantationDrug holidayMore medicationsStriatonigral degenerationNeurologic functionDopaminergic neuronsDrug therapyRoles of intracellular cAMP and protein kinase A in the actions of dopamine and neurotensin on midbrain dopamine neurons
Shi W, Bunney B. Roles of intracellular cAMP and protein kinase A in the actions of dopamine and neurotensin on midbrain dopamine neurons. Journal Of Neuroscience 1992, 12: 2433-2438. PMID: 1318960, PMCID: PMC6575923, DOI: 10.1523/jneurosci.12-06-02433.1992.Peer-Reviewed Original ResearchConceptsDopamine-induced inhibitionEffects of neurotensinDopamine neuronsIntracellular cAMPAdenylate cyclaseAction of neurotensinRat midbrain slicesAction of dopamineVentral tegmental areaMidbrain dopamine neuronsIntracellular cAMP levelsMidbrain slicesSubstantia nigraTegmental areaDopamine cellsDopamine effectsSpontaneous activityModulatory effectsNeurotensinIsobutyl methylxanthineInhibitory effectNeuronsCAMP levelsProtein kinase CInhibitionClozapine: A Hypothesised Mechanism for its Unique Clinical Profile
Bunney B. Clozapine: A Hypothesised Mechanism for its Unique Clinical Profile. The British Journal Of Psychiatry. Supplement 1992, 160: 17-21. PMID: 1418885, DOI: 10.1192/s0007125000296864.Peer-Reviewed Original Research