2000
Multivalent Binding of Nonnative Substrate Proteins by the Chaperonin GroEL
Farr G, Furtak K, Rowland M, Ranson N, Saibil H, Kirchhausen T, Horwich A. Multivalent Binding of Nonnative Substrate Proteins by the Chaperonin GroEL. Cell 2000, 100: 561-573. PMID: 10721993, DOI: 10.1016/s0092-8674(00)80692-3.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsBacterial ProteinsBinding SitesCattleChaperonin 10Chaperonin 60Chemical PhenomenaChemistry, PhysicalCryoelectron MicroscopyCystineEscherichia coliEthylmaleimideImage Processing, Computer-AssistedMacromolecular SubstancesMalate DehydrogenaseModels, MolecularPeptidesProtein BindingProtein ConformationProtein FoldingProtein Structure, TertiaryRibulose-Bisphosphate CarboxylaseStructure-Activity RelationshipThiosulfate SulfurtransferaseConceptsNonnative substrate proteinApical domainSubstrate proteinsChaperonin GroELWild-type domainCross-linking experimentsCochaperonin GroESNonnative proteinsProductive foldingGroEL ringSingle polypeptideHydrophobic residuesMalate dehydrogenaseBinary complex formationRubiscoProteinInside aspectMultivalent bindingGroELCentral cavityComplex formationBindingDomainGroESOpen ring
1998
STRUCTURE AND FUNCTION IN GroEL-MEDIATED PROTEIN FOLDING
Sigler P, Xu Z, Rye H, Burston S, Fenton W, Horwich A. STRUCTURE AND FUNCTION IN GroEL-MEDIATED PROTEIN FOLDING. Annual Review Of Biochemistry 1998, 67: 581-608. PMID: 9759498, DOI: 10.1146/annurev.biochem.67.1.581.Peer-Reviewed Original ResearchConceptsProtein foldingNative stateMechanism of chaperoninsCis ternary complexAsymmetric conformational changesFinal native stateNonnative polypeptidesCochaperonin GroESGroEL ringTrans ringATP hydrolysisGenetic informationChaperonin moleculesConformational changesFolding processFoldingTernary complexPolypeptideGroESATPBiochemical investigationsFinal stepChaperoninGroELComplexes
1997
GroEL‐Mediated protein folding
Fenton W, Horwich A. GroEL‐Mediated protein folding. Protein Science 1997, 6: 743-760. PMID: 9098884, PMCID: PMC2144759, DOI: 10.1002/pro.5560060401.Peer-Reviewed Original ResearchConceptsGroEL-GroESNonnative polypeptidesSubstrate proteinsATP bindingProtein foldingHomologous proteinsNonnative formsPrimary structureConformational changesGroELTernary complexPolypeptideAssociation 5FoldingProteinBindingChaperonesGroESConformationEnergy landscapeRole of hydrophobicityPathway 3RolePathwayComplex C.
1995
Kinesis of polypeptide during GroEL-mediated folding.
Horwich A, Weissman J, Fenton W. Kinesis of polypeptide during GroEL-mediated folding. Cold Spring Harbor Symposia On Quantitative Biology 1995, 60: 435-40. PMID: 8824417, DOI: 10.1101/sqb.1995.060.01.048.Peer-Reviewed Original Research
1994
Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains
Kim S, Willison K, Horwich A. Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends In Biochemical Sciences 1994, 19: 543-548. PMID: 7846767, DOI: 10.1016/0968-0004(94)90058-2.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphatasesAmino Acid SequenceBinding SitesBiological EvolutionChaperonin 60ChaperoninsConserved SequenceIntracellular Signaling Peptides and ProteinsMicrotubule-Associated ProteinsMolecular Sequence DataNuclear ProteinsPeptidesSequence AlignmentT-Complex Genome RegionUbiquitin-Protein Ligases
1992
Two related genes encoding extremely hydrophobic proteins suppress a lethal mutation in the yeast mitochondrial processing enhancing protein.
West A, Clark D, Martin J, Neupert W, Hartl F, Horwich A. Two related genes encoding extremely hydrophobic proteins suppress a lethal mutation in the yeast mitochondrial processing enhancing protein. Journal Of Biological Chemistry 1992, 267: 24625-24633. PMID: 1447206, DOI: 10.1016/s0021-9258(18)35810-1.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceChromosomes, FungalDNA, FungalGenes, FungalGenes, LethalGenes, SuppressorGenotypeMitochondriaMolecular Sequence DataMutationOpen Reading FramesPeptidesPlasmidsProtein ConformationRestriction MappingSaccharomyces cerevisiaeSequence DeletionSequence Homology, Amino AcidSuppression, GeneticTemperatureConceptsProtein importHydrophobic proteinsNH2-terminal signal peptideYeast genomic libraryNonfermentable carbon sourcesProteins of mitochondriaMitochondrial membrane proteinPrecursor proteinHigh-copy plasmidMitochondrial processingProtein translocationGenomic libraryPEP geneGrowth defectChromosomal genesMembrane proteinsMitochondrial matrixSignal peptideGenetic suppressionLethal mutationsMitochondrial membraneDouble disruptionRelated genesSequence analysisProteolytic removal
1985
Arginine in the leader peptide is required for both import and proteolytic cleavage of a mitochondrial precursor.
Horwich A, Kalousek F, Rosenberg L. Arginine in the leader peptide is required for both import and proteolytic cleavage of a mitochondrial precursor. Proceedings Of The National Academy Of Sciences Of The United States Of America 1985, 82: 4930-4933. PMID: 3895227, PMCID: PMC390471, DOI: 10.1073/pnas.82.15.4930.Peer-Reviewed Original ResearchConceptsLeader peptideOrnithine transcarbamoylaseImport of precursorsMost mitochondrial proteinsMitochondrial matrix fractionOverall amino acid compositionMitochondrial matrix enzymeMitochondrial precursorsMitochondrial proteinsSubunit precursorAmino acid compositionBasic arginine residuesBasic residuesMatrix enzymeGlycine residueLarger precursorArginine residuesMatrix fractionIntact mitochondriaNH2-terminalDependent proteaseProteolytic cleavageTranscarbamoylaseResiduesMitochondria