2024
Microbial transformation of dietary xenobiotics shapes gut microbiome composition
Culp E, Nelson N, Verdegaal A, Goodman A. Microbial transformation of dietary xenobiotics shapes gut microbiome composition. Cell 2024, 187: 6327-6345.e20. PMID: 39321800, PMCID: PMC11531382, DOI: 10.1016/j.cell.2024.08.038.Peer-Reviewed Original ResearchGut microbiomeHuman gut microbesGut microbiome compositionDiet-microbiome interactionsGut microbesCommunity compositionMicrobiome compositionMicrobial metabolismResponse to dietInterindividual variationMicrobiomeDietary xenobioticsMap interactionsGutMetabolic activityEnzymeXenobioticsDetoxificationGenesMicrobesResveratrolRemodelingTraitsInteractionVariationIntegrating the gut microbiome and pharmacology
Verdegaal A, Goodman A. Integrating the gut microbiome and pharmacology. Science Translational Medicine 2024, 16: eadg8357. PMID: 38295186, DOI: 10.1126/scitranslmed.adg8357.Peer-Reviewed Original Research
2023
Bacteria require phase separation for fitness in the mammalian gut
Krypotou E, Townsend G, Gao X, Tachiyama S, Liu J, Pokorzynski N, Goodman A, Groisman E. Bacteria require phase separation for fitness in the mammalian gut. Science 2023, 379: 1149-1156. PMID: 36927025, PMCID: PMC10148683, DOI: 10.1126/science.abn7229.Peer-Reviewed Original ResearchConceptsMammalian gutTranscription termination factor RhoTermination factor RhoGene regulationTranscription terminationMechanisms bacteriaBacteria interactionsHuman commensalValuable targetBacteriaRhoGut microbiotaFitnessNovel clinical applicationsTherapeutic manipulationGutHuman healthCommensalRegulation
2018
The Stringent Response Determines the Ability of a Commensal Bacterium to Survive Starvation and to Persist in the Gut
Schofield WB, Zimmermann-Kogadeeva M, Zimmermann M, Barry NA, Goodman AL. The Stringent Response Determines the Ability of a Commensal Bacterium to Survive Starvation and to Persist in the Gut. Cell Host & Microbe 2018, 24: 120-132.e6. PMID: 30008292, PMCID: PMC6086485, DOI: 10.1016/j.chom.2018.06.002.Peer-Reviewed Original ResearchConceptsCarbon starvationStringent responseHuman gut bacterium Bacteroides thetaiotaomicronTricarboxylic acid cycle genesMultiple biosynthetic pathwaysCycle genesCentral metabolismMammalian gutTriggers accumulationBiosynthetic pathwayBacteroides thetaiotaomicronDeficient strainMetabolic regulatorAlpha-ketoglutarate supplementationStarvationAlpha-ketoglutarateC labelingCommensal bacteriaMetabolomic analysisGut microbiomeCommensal bacteriumThetaiotaomicronBacteriaPathwayGut
2017
Engineered Regulatory Systems Modulate Gene Expression of Human Commensals in the Gut
Lim B, Zimmermann M, Barry NA, Goodman AL. Engineered Regulatory Systems Modulate Gene Expression of Human Commensals in the Gut. Cell 2017, 169: 547-558.e15. PMID: 28431252, PMCID: PMC5532740, DOI: 10.1016/j.cell.2017.03.045.Peer-Reviewed Original ResearchConceptsGene expressionModulate gene expressionAbsence of inducerCommunity assemblyAddition of inducerGenetic toolsInducible promoterGene productsExpression platformHost physiologyPromoter activityHuman commensalGenus BacteroidesSynthetic inducersGut anaerobesInducerSialidase activityExpressionNumerous aspectsGut microbiotaSialic acidGutPromoterValuable toolCommensal
2013
Experimental Approaches for Defining Functional Roles of Microbes in the Human Gut
Dantas G, Sommer MO, Degnan PH, Goodman AL. Experimental Approaches for Defining Functional Roles of Microbes in the Human Gut. Annual Review Of Microbiology 2013, 67: 459-475. PMID: 24024637, PMCID: PMC4718711, DOI: 10.1146/annurev-micro-092412-155642.Peer-Reviewed Original ResearchConceptsMicrobial communitiesFree-living microbial communitiesHigh-throughput DNA sequencingCulture-independent surveysGenome sequence projectHuman gutHost-microbe interactionsGut microbial communityMicrobial genomesGene contentMicrobial genesModel organismsHost-microbiota relationshipFunctional roleDNA sequencingFunction strategyModel systemExperimental approachUnderlying mechanismGenomeGutGenesMicrobesOrganismsSpecies