NIMG-71. IDENTIFYING CLINICALLY APPLICABLE MACHINE LEARNING ALGORITHMS FOR GLIOMA SEGMENTATION USING A SYSTEMATIC LITERATURE REVIEW
Tillmanns N, Lum A, Brim W, Subramanian H, Lin M, Bousabarah K, Malhotra A, cui J, Brackett A, Payabvash S, Ikuta I, Johnson M, Turowski B, Aboian M. NIMG-71. IDENTIFYING CLINICALLY APPLICABLE MACHINE LEARNING ALGORITHMS FOR GLIOMA SEGMENTATION USING A SYSTEMATIC LITERATURE REVIEW. Neuro-Oncology 2021, 23: vi145-vi145. PMCID: PMC8598815, DOI: 10.1093/neuonc/noab196.568.Peer-Reviewed Original ResearchConvolutional neural networkSegmentation of gliomasSupport vector machineGlioma segmentationDeep learningMachine learningLikelihood of overfittingMachine Learning AlgorithmsArtificial intelligenceLearning algorithmDice scoreML algorithmsTumor segmentationNeural networkVector machineCommon algorithmsSegmentationSame datasetML methodsTCIA datasetAlgorithmData acquisitionAccuracy reportingHigh accuracyLearning