Noise-aware dynamic image denoising and positron range correction for Rubidium-82 cardiac PET imaging via self-supervision
Xie H, Guo L, Velo A, Liu Z, Liu Q, Guo X, Zhou B, Chen X, Tsai Y, Miao T, Xia M, Liu Y, Armstrong I, Wang G, Carson R, Sinusas A, Liu C. Noise-aware dynamic image denoising and positron range correction for Rubidium-82 cardiac PET imaging via self-supervision. Medical Image Analysis 2024, 100: 103391. PMID: 39579623, DOI: 10.1016/j.media.2024.103391.Peer-Reviewed Original ResearchImage denoisingPositron range correctionDynamic framesSelf-supervised methodsSuperior visual qualityLow signal-to-noise ratioCardiac PET imagingDenoising methodSignal-to-noise ratioSelf-supervisionVisual qualityHigh-energy positronsRange correctionsDenoisingNoise levelImage spatial resolutionImage qualityDefect contrastPET imagingImage quantificationRadioactive isotopesPatient scansQuantitative accuracyImagesFrameHeteroscedastic Uncertainty Estimation Framework for Unsupervised Registration
Zhang X, Pak D, Ahn S, Li X, You C, Staib L, Sinusas A, Wong A, Duncan J. Heteroscedastic Uncertainty Estimation Framework for Unsupervised Registration. Lecture Notes In Computer Science 2024, 15002: 651-661. DOI: 10.1007/978-3-031-72069-7_61.Peer-Reviewed Original ResearchUnsupervised registrationReal-world medical imagesCollaborative training strategyMedical image datasetsDeep learning methodsAccurate displacement estimationSignal-to-noise ratioImage datasetsRegistration architectureLearning methodsMedical imagesTraining strategyNoise distributionUncertainty estimationWeighting schemeRegistration performanceSpatial domainEstimation frameworkInput-dependentUncertainty estimation frameworkUniform noise levelsDisplacement estimationFrameworkNoise levelUnsupervised