2024
microRNA-33 controls hunger signaling in hypothalamic AgRP neurons
Price N, Fernández-Tussy P, Varela L, Cardelo M, Shanabrough M, Aryal B, de Cabo R, Suárez Y, Horvath T, Fernández-Hernando C. microRNA-33 controls hunger signaling in hypothalamic AgRP neurons. Nature Communications 2024, 15: 2131. PMID: 38459068, PMCID: PMC10923783, DOI: 10.1038/s41467-024-46427-0.Peer-Reviewed Original ResearchConceptsAgRP neuronsFeeding behaviorFatty acid metabolismNon-coding RNAsMitochondrial biogenesisRegulatory pathwaysTarget genesHypothalamic AgRP neuronsExcessive nutrient intakeCentral regulatorBioenergetic processesAcid metabolismActivation of AgRP neuronsModulate feeding behaviorCentral regulation of feeding behaviorRegulation of feeding behaviorMiR-33Hunger signalsMicroRNA-33Metabolic diseasesAlternative therapeutic approachLoss of miR-33Mouse modelMetabolic dysfunctionRegulation
2023
A small-molecule degrader of TET3 as treatment for anorexia nervosa in an animal model
Lv H, Catarino J, Li D, Liu B, Gao X, Horvath T, Huang Y. A small-molecule degrader of TET3 as treatment for anorexia nervosa in an animal model. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2300015120. PMID: 37036983, PMCID: PMC10120042, DOI: 10.1073/pnas.2300015120.Peer-Reviewed Original ResearchConceptsVesicular GABA transporterActivity-based anorexiaExpression of AgRPNeuropeptide YAgRP neuronsAnorexia nervosaAnxiety/depressive-like behaviorsHypothalamic AgRP neuronsDepressive-like behaviorCurrent treatment optionsHigh relapse rateStress-related disordersHuman neuronal cellsNutritional supportRelapse rateTreatment optionsAnxiolytic effectsPsychiatric illnessMouse modelAnimal modelsHigh mortalityGABA transporterGenetic ablationNeuronal cellsNeuronsNeonatal loss of FGFR2 in astroglial cells affects locomotion, sociability, working memory, and glia-neuron interactions in mice
Stevens H, Scuderi S, Collica S, Tomasi S, Horvath T, Vaccarino F. Neonatal loss of FGFR2 in astroglial cells affects locomotion, sociability, working memory, and glia-neuron interactions in mice. Translational Psychiatry 2023, 13: 89. PMID: 36906620, PMCID: PMC10008554, DOI: 10.1038/s41398-023-02372-y.Peer-Reviewed Original ResearchConceptsFibroblast growth factor receptor 2Anxiety-like behaviorAttention deficit hyperactivity disorderAstroglial cellsGrowth factor receptor 2Reduced anxiety-like behaviorGlia-neuron interactionsAstroglial cell functionEarly postnatal periodFactor receptor 2Early postnatal lossPostnatal mouse brainWeeks of ageDeficit hyperactivity disorderGlial cellsGlutamine synthetase expressionBehavioral deficitsPostnatal periodReceptor 2Floxed miceHGFAP-CreMouse brainNeonatal lossPostnatal astrogliaPostnatal loss
2022
A hypothalamic dopamine locus for psychostimulant-induced hyperlocomotion in mice
Korchynska S, Rebernik P, Pende M, Boi L, Alpár A, Tasan R, Becker K, Balueva K, Saghafi S, Wulff P, Horvath TL, Fisone G, Dodt HU, Hökfelt T, Harkany T, Romanov RA. A hypothalamic dopamine locus for psychostimulant-induced hyperlocomotion in mice. Nature Communications 2022, 13: 5944. PMID: 36209152, PMCID: PMC9547883, DOI: 10.1038/s41467-022-33584-3.Peer-Reviewed Original ResearchConceptsLateral septumDopamine neuronsSuprachiasmatic nucleusSomatostatin-containing neuronsStimulation ex vivoAmphetamine-induced hyperlocomotionRegulation of locomotionDopamine outputChemogenetic inhibitionNeuropeptidergic innervationPeriventricular nucleusChemogenetic manipulationHypothalamic lociSynaptic targetsAnterior subdivisionEx vivoBrain clockNeuronsSedentary periodL activityHyperlocomotionCellular targetsMicePeVNInnervationTET3 epigenetically controls feeding and stress response behaviors via AGRP neurons
Xie D, Stutz B, Li F, Chen F, Lv H, Sestan-Pesa M, Catarino J, Gu J, Zhao H, Stoddard CE, Carmichael GG, Shanabrough M, Taylor HS, Liu ZW, Gao XB, Horvath TL, Huang Y. TET3 epigenetically controls feeding and stress response behaviors via AGRP neurons. Journal Of Clinical Investigation 2022, 132: e162365. PMID: 36189793, PMCID: PMC9525119, DOI: 10.1172/jci162365.Peer-Reviewed Original ResearchConceptsAgRP neuronsNeuropeptide YExpression of AgRPControl of feedingHypothalamic agoutiAnxiolytic effectsNeurotransmitter GABAMouse modelLeptin signalingStress-like behaviorsGenetic ablationNeuronsAgRPCritical central regulatorsEnergy expenditureGABAEnergy metabolismAppetiteFeedingCentral regulatorMetabolismCentral controlHuman cellsTET3ObesityLINE-1 activation in the cerebellum drives ataxia
Takahashi T, Stoiljkovic M, Song E, Gao XB, Yasumoto Y, Kudo E, Carvalho F, Kong Y, Park A, Shanabrough M, Szigeti-Buck K, Liu ZW, Kristant A, Zhang Y, Sulkowski P, Glazer PM, Kaczmarek LK, Horvath TL, Iwasaki A. LINE-1 activation in the cerebellum drives ataxia. Neuron 2022, 110: 3278-3287.e8. PMID: 36070749, PMCID: PMC9588660, DOI: 10.1016/j.neuron.2022.08.011.Peer-Reviewed Original ResearchConceptsLINE-1 activationL1 activationAtaxia telangiectasia patientsNuclear element-1Transposable elementsEpigenetic silencersHuman genomeL1 promoterMolecular regulatorsDNA damagePurkinje cell dysfunctionElement 1First direct evidenceTelangiectasia patientsDirect targetingCerebellar expressionNeurodegenerative diseasesDisease etiologyCalcium homeostasisVentromedial hypothalamic OGT drives adipose tissue lipolysis and curbs obesity
Wang Q, Zhang B, Stutz B, Liu ZW, Horvath TL, Yang X. Ventromedial hypothalamic OGT drives adipose tissue lipolysis and curbs obesity. Science Advances 2022, 8: eabn8092. PMID: 36044565, PMCID: PMC9432828, DOI: 10.1126/sciadv.abn8092.Peer-Reviewed Original ResearchConceptsVentromedial hypothalamusWhite adipose tissueVMH neuronsAdipose tissueBody weightLipid metabolismRapid weight gainCounterregulatory responsesSympathetic activitySympathetic innervationAdipocyte hypertrophyTissue lipolysisNeuronal excitabilityFood intakePhysical activityObesity phenotypesGenetic ablationWeight gainHomeostatic set pointEnergy expenditureNeuronsInnervationLipolysisSignificant changesCellular sensorsTREM2 Deficiency Disrupts Network Oscillations Leading to Epileptic Activity and Aggravates Amyloid-β-Related Hippocampal Pathophysiology in Mice
Stoiljkovic M, Gutierrez KO, Kelley C, Horvath TL, Hajós M. TREM2 Deficiency Disrupts Network Oscillations Leading to Epileptic Activity and Aggravates Amyloid-β-Related Hippocampal Pathophysiology in Mice. Journal Of Alzheimer's Disease 2022, 88: 837-847. PMID: 34120899, PMCID: PMC8898080, DOI: 10.3233/jad-210041.Peer-Reviewed Original ResearchConceptsAlzheimer's diseaseMicroglial functionTREM2 functionTheta-phase gamma-amplitude couplingHippocampal network functionSpontaneous epileptiform seizuresNetwork oscillationsTransgenic AD modelHippocampal neuronal excitabilityMyeloid cells 2Clinical Alzheimer's diseaseWild-type miceHippocampal network oscillationsHippocampal pathophysiologyProgressive dementiaTau pathologyUrethane anesthesiaAD pathophysiologyNeuronal excitabilityEpileptiform seizuresEpileptic activityAD modelTREM2Disease pathologyCells 2AgRP neurons control structure and function of the medial prefrontal cortex
Stutz B, Waterson MJ, Šestan-Peša M, Dietrich MO, Škarica M, Sestan N, Racz B, Magyar A, Sotonyi P, Liu ZW, Gao XB, Matyas F, Stoiljkovic M, Horvath TL. AgRP neurons control structure and function of the medial prefrontal cortex. Molecular Psychiatry 2022, 27: 3951-3960. PMID: 35906488, PMCID: PMC9891653, DOI: 10.1038/s41380-022-01691-8.Peer-Reviewed Original ResearchConceptsMedial prefrontal cortexAgRP neuronsNon-selective dopamine receptor antagonistBrain functionPrefrontal cortexHypothalamic AgRP neuronsMedial thalamic neuronsAdministration of clozapineDopamine receptor antagonistVentral tegmental areaOscillatory network activityHigher-order brain functionsHypothalamic agoutiThalamic neuronsChemogenetic inhibitionDopaminergic neuronsReceptor antagonistTegmental areaNeuronal pathwaysSensorimotor gatingAdult miceModulatory impactAmbulatory behaviorConstitutive impairmentNeuronsAgRP neurons control feeding behaviour at cortical synapses via peripherally derived lysophospholipids
Endle H, Horta G, Stutz B, Muthuraman M, Tegeder I, Schreiber Y, Snodgrass IF, Gurke R, Liu ZW, Sestan-Pesa M, Radyushkin K, Streu N, Fan W, Baumgart J, Li Y, Kloss F, Groppa S, Opel N, Dannlowski U, Grabe HJ, Zipp F, Rácz B, Horvath TL, Nitsch R, Vogt J. AgRP neurons control feeding behaviour at cortical synapses via peripherally derived lysophospholipids. Nature Metabolism 2022, 4: 683-692. PMID: 35760867, PMCID: PMC9940119, DOI: 10.1038/s42255-022-00589-7.Peer-Reviewed Original ResearchConceptsFasting-induced hyperphagiaCortical excitabilityAgRP neuronsLysophosphatidic acidPeripheral metabolismHigher body mass indexFasting-induced elevationHypothalamic AgRP neuronsEffects of LPABody mass indexHigher cortical excitabilityBrain lipid levelsCentral nervous systemPrevalence of typeGlutamatergic transmissionHypothalamic agoutiMass indexOvernight fastingPeptide neuronsCortical synapsesLipid levelsFood intakeCerebrospinal fluidNervous systemPhospholipid levelsPlant mitochondrial FMT and its mammalian homolog CLUH controls development and behavior in Arabidopsis and locomotion in mice
Ralevski A, Apelt F, Olas JJ, Mueller-Roeber B, Rugarli EI, Kragler F, Horvath TL. Plant mitochondrial FMT and its mammalian homolog CLUH controls development and behavior in Arabidopsis and locomotion in mice. Cellular And Molecular Life Sciences 2022, 79: 334. PMID: 35652974, PMCID: PMC11071973, DOI: 10.1007/s00018-022-04382-3.Peer-Reviewed Original ResearchConceptsMitochondrial genesWhole plant morphologySalt stress responseNormal growth conditionsLeaf expansion growthArabidopsis thalianaHigher eukaryotesGene familyMitochondrial proteinsPlant morphologyHomologous functionsMitochondrial morphologyExpansion growthStress responseMitochondrial functionAnimal speciesPlantsSimilar roleGrowth conditionsHeterozygous knockout miceGenesDevelopmental alterationsKnockout miceCLUHArabidopsisA hypothalamic pathway for Augmentor α–controlled body weight regulation
Ahmed M, Kaur N, Cheng Q, Shanabrough M, Tretiakov EO, Harkany T, Horvath TL, Schlessinger J. A hypothalamic pathway for Augmentor α–controlled body weight regulation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2200476119. PMID: 35412887, PMCID: PMC9169862, DOI: 10.1073/pnas.2200476119.Peer-Reviewed Original ResearchConceptsParaventricular nucleusBody weightDiet-induced obesityBody weight regulationDiscrete neuronal populationsMelanocortin receptor 4Whole-body energy homeostasisPhysiological rolePeptide neuronsHypothalamic pathwaysReceptor 4Neuronal pathwaysPhysical activityLittermate controlsWeight regulationNeuronal populationsMetabolic diseasesTherapeutic opportunitiesMutant miceEnergy homeostasisMiceALKCancerHuman cancersALK mutants
2021
Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis
Gómez-Valadés AG, Pozo M, Varela L, Boudjadja MB, Ramírez S, Chivite I, Eyre E, Haddad-Tóvolli R, Obri A, Milà-Guasch M, Altirriba J, Schneeberger M, Imbernón M, Garcia-Rendueles AR, Gama-Perez P, Rojo-Ruiz J, Rácz B, Alonso MT, Gomis R, Zorzano A, D’Agostino G, Alvarez CV, Nogueiras R, Garcia-Roves PM, Horvath TL, Claret M. Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis. Cell Metabolism 2021, 33: 1820-1835.e9. PMID: 34343501, PMCID: PMC8432968, DOI: 10.1016/j.cmet.2021.07.008.Peer-Reviewed Original ResearchConceptsProtein OPA1Mitochondrial CaMitochondrial cristae architectureAdipose tissue lipolysisKey metabolic sensorPOMC neuronsCellular metabolic adaptationTissue lipolysisCristae architectureMetabolic sensorNutrient availabilityWhite adipose tissue lipolysisAlpha-melanocyte stimulating hormoneGenetic inactivationNovel axisMitochondrial functionOPA1Metabolic adaptationMitochondrial cristaeDramatic alterationsMutant miceProopiomelanocortin neuronsLipolysis controlWAT lipolysisPharmacological blockadeKetogenic diet restrains aging-induced exacerbation of coronavirus infection in mice
Ryu S, Shchukina I, Youm YH, Qing H, Hilliard B, Dlugos T, Zhang X, Yasumoto Y, Booth CJ, Fernández-Hernando C, Suárez Y, Khanna K, Horvath TL, Dietrich MO, Artyomov M, Wang A, Dixit VD. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. ELife 2021, 10: e66522. PMID: 34151773, PMCID: PMC8245129, DOI: 10.7554/elife.66522.Peer-Reviewed Original ResearchConceptsΓδ T cellsKetogenic dietCoronavirus infectionAged miceT cellsHigher systemic inflammationInfected aged miceCOVID-19 severityCOVID-19 infectionActivation of ketogenesisMouse hepatitis virus strain A59Systemic inflammationInflammatory damageInfluenza infectionClinical hallmarkNLRP3 inflammasomeImmune surveillanceAdipose tissuePotential treatmentInfectionMiceStrongest predictorLungMortalityAgeHunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward auto-activation loop in mice
Varela L, Stutz B, Song JE, Kim JG, Liu ZW, Gao XB, Horvath TL. Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward auto-activation loop in mice. Journal Of Clinical Investigation 2021, 131 PMID: 33848272, PMCID: PMC8121506, DOI: 10.1172/jci144239.Peer-Reviewed Original ResearchConceptsAgRP neuronsHypothalamic feeding circuitsInhibitory neurotransmitter GABAGhrelin administrationInhibitory toneAstrocytic responseMetabolic milieuProstaglandin E2Neurotransmitter GABANeuronal controlSynaptic plasticityGlial processesNeuronsNeural excitationMitochondrial adaptationsFood deprivationAstrocytesPerikaryaFeeding circuitRegion crucialFeedingObesityGABAExcitabilityChemogeneticsObesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension
Gruber T, Pan C, Contreras RE, Wiedemann T, Morgan DA, Skowronski AA, Lefort S, De Bernardis Murat C, Le Thuc O, Legutko B, Ruiz-Ojeda FJ, de la Fuente-Fernández M, García-Villalón AL, González-Hedström D, Huber M, Szigeti-Buck K, Müller TD, Ussar S, Pfluger P, Woods SC, Ertürk A, LeDuc CA, Rahmouni K, Granado M, Horvath TL, Tschöp MH, García-Cáceres C. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metabolism 2021, 33: 1155-1170.e10. PMID: 33951475, PMCID: PMC8183500, DOI: 10.1016/j.cmet.2021.04.007.Peer-Reviewed Original ResearchConceptsBlood pressureObesity-associated increaseObesity-induced hypertensionElevated blood pressureSystemic blood pressureEndothelial growth factorHIF1α-VEGFArterial hypertensionNovel mechanistic linkSympathetic hyperactivityHemodynamic homeostasisHypothalamic astrocytesMetabolic syndromeRegion-specific lossMacrovascular systemsLeptin signalingBrain centersPathophysiological processesHypertensionGliovascular interfacePathway disruptionGrowth factorAstrocytesMechanistic linkAngiopathyAdiponectin preserves metabolic fitness during aging
Li N, Zhao S, Zhang Z, Zhu Y, Gliniak CM, Vishvanath L, An YA, Wang MY, Deng Y, Zhu Q, Shan B, Sherwood A, Onodera T, Oz OK, Gordillo R, Gupta RK, Liu M, Horvath TL, Dixit VD, Scherer PE. Adiponectin preserves metabolic fitness during aging. ELife 2021, 10: e65108. PMID: 33904399, PMCID: PMC8099426, DOI: 10.7554/elife.65108.Peer-Reviewed Original ResearchConceptsAdiponectin null miceSystemic insulin sensitivityInsulin sensitivityNull miceAge-related glucoseRole of adiponectinLipid metabolism disordersHigh-fat dietTransgenic mouse modelAdiponectin levelsTissue inflammationMetabolism disordersClinical studiesMouse modelAdiponectinMice displayMetabolic fitnessOverexpression modelPositive associationMiceMedian lifespanHealthspanDirect effectEssential regulatorAging processUcp2-dependent microglia-neuronal coupling controls ventral hippocampal circuit function and anxiety-like behavior
Yasumoto Y, Stoiljkovic M, Kim JD, Sestan-Pesa M, Gao XB, Diano S, Horvath TL. Ucp2-dependent microglia-neuronal coupling controls ventral hippocampal circuit function and anxiety-like behavior. Molecular Psychiatry 2021, 26: 2740-2752. PMID: 33879866, PMCID: PMC8056795, DOI: 10.1038/s41380-021-01105-1.Peer-Reviewed Original ResearchConceptsAnxiety-like behaviorReactive oxygen speciesMicroglia-synapse contactsSpine synapse numberHippocampal circuit functionNeuronal circuit dysfunctionMicroglial productionVentral hippocampusCircuit dysfunctionSpine synapsesSynapse numberAdult brainTransient riseMitochondrial ROS generationMicrogliaBrain functionConditional ablationPhagocytic inclusionsSynaptic elementsProtein 2ROS generationSignificant reductionCircuit functionConsequent accumulationOxygen speciesCerebellar Kv3.3 potassium channels activate TANK-binding kinase 1 to regulate trafficking of the cell survival protein Hax-1
Zhang Y, Varela L, Szigeti-Buck K, Williams A, Stoiljkovic M, Šestan-Peša M, Henao-Mejia J, D’Acunzo P, Levy E, Flavell RA, Horvath TL, Kaczmarek LK. Cerebellar Kv3.3 potassium channels activate TANK-binding kinase 1 to regulate trafficking of the cell survival protein Hax-1. Nature Communications 2021, 12: 1731. PMID: 33741962, PMCID: PMC7979925, DOI: 10.1038/s41467-021-22003-8.Peer-Reviewed Original ResearchConceptsTank Binding Kinase 1HAX-1Kv3.3 potassium channelMultivesicular bodiesKinase 1TANK-binding kinase 1Activation of caspasesAnti-apoptotic proteinsPotassium channelsMembrane proteinsBiochemical pathwaysCerebellar neuronsChannels bindCell deathTBK1 activityIon channelsMutant channelsCellular constituentsTraffickingKv3.3 channelsProteinNeuronal survivalMutationsChannel inactivationCaspasesDrp1 is required for AgRP neuronal activity and feeding
Jin S, Yoon NA, Liu ZW, Song JE, Horvath TL, Kim JD, Diano S. Drp1 is required for AgRP neuronal activity and feeding. ELife 2021, 10: e64351. PMID: 33689681, PMCID: PMC7946429, DOI: 10.7554/elife.64351.Peer-Reviewed Original ResearchConceptsAgRP neuronal activityFatty acid oxidationAgRP neuronsNeuronal activityAgRP neuronal functionHypothalamic AgRP neuronsBody weight regulationMitochondrial fatty acid utilizationWhole-body energy homeostasisHypothalamic orexigenic agoutiFatty acid utilizationAcid oxidationFat massCKO miceNeuronal activationPeptide-1Body weightNeuronal functionOrexigenic agoutiEnergy homeostasisMitochondrial fissionSignificant decreaseEnergy expenditureNeuronsAcid utilization