2024
Hypothalamic hormone deficiency enables physiological anorexia in ground squirrels during hibernation
Mohr S, Dai Pra R, Platt M, Feketa V, Shanabrough M, Varela L, Kristant A, Cao H, Merriman D, Horvath T, Bagriantsev S, Gracheva E. Hypothalamic hormone deficiency enables physiological anorexia in ground squirrels during hibernation. Nature Communications 2024, 15: 5803. PMID: 38987241, PMCID: PMC11236985, DOI: 10.1038/s41467-024-49996-2.Peer-Reviewed Original ResearchConceptsHypothalamic feeding centersHormone deficiencyHypothalamic arcuate nucleus neuronsArcuate nucleus neuronsThyroid hormone deficiencyFeeding centerEffects of ghrelinAnorexigenic effectNucleus neuronsPhysiological anorexiaThyroid hormonesNormal physiological functionsGround squirrelsInterbout arousalAnorexiaThirteen-lined ground squirrelsProlonged periodReduced sensitivityPhysiological functionsDeficiencymicroRNA-33 controls hunger signaling in hypothalamic AgRP neurons
Price N, Fernández-Tussy P, Varela L, Cardelo M, Shanabrough M, Aryal B, de Cabo R, Suárez Y, Horvath T, Fernández-Hernando C. microRNA-33 controls hunger signaling in hypothalamic AgRP neurons. Nature Communications 2024, 15: 2131. PMID: 38459068, PMCID: PMC10923783, DOI: 10.1038/s41467-024-46427-0.Peer-Reviewed Original ResearchConceptsAgRP neuronsFeeding behaviorFatty acid metabolismNon-coding RNAsMitochondrial biogenesisRegulatory pathwaysTarget genesHypothalamic AgRP neuronsExcessive nutrient intakeCentral regulatorBioenergetic processesAcid metabolismActivation of AgRP neuronsModulate feeding behaviorCentral regulation of feeding behaviorRegulation of feeding behaviorMiR-33Hunger signalsMicroRNA-33Metabolic diseasesAlternative therapeutic approachLoss of miR-33Mouse modelMetabolic dysfunctionRegulation
2023
A small-molecule degrader of TET3 as treatment for anorexia nervosa in an animal model
Lv H, Catarino J, Li D, Liu B, Gao X, Horvath T, Huang Y. A small-molecule degrader of TET3 as treatment for anorexia nervosa in an animal model. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2300015120. PMID: 37036983, PMCID: PMC10120042, DOI: 10.1073/pnas.2300015120.Peer-Reviewed Original ResearchMeSH KeywordsAgouti-Related ProteinAnimalsAnorexia NervosaDioxygenasesHumansHypothalamusMiceModels, AnimalNeuronsConceptsVesicular GABA transporterActivity-based anorexiaExpression of AgRPNeuropeptide YAgRP neuronsAnorexia nervosaAnxiety/depressive-like behaviorsHypothalamic AgRP neuronsDepressive-like behaviorCurrent treatment optionsHigh relapse rateStress-related disordersHuman neuronal cellsNutritional supportRelapse rateTreatment optionsAnxiolytic effectsPsychiatric illnessMouse modelAnimal modelsHigh mortalityGABA transporterGenetic ablationNeuronal cellsNeurons
2022
A hypothalamic dopamine locus for psychostimulant-induced hyperlocomotion in mice
Korchynska S, Rebernik P, Pende M, Boi L, Alpár A, Tasan R, Becker K, Balueva K, Saghafi S, Wulff P, Horvath TL, Fisone G, Dodt HU, Hökfelt T, Harkany T, Romanov RA. A hypothalamic dopamine locus for psychostimulant-induced hyperlocomotion in mice. Nature Communications 2022, 13: 5944. PMID: 36209152, PMCID: PMC9547883, DOI: 10.1038/s41467-022-33584-3.Peer-Reviewed Original ResearchConceptsLateral septumDopamine neuronsSuprachiasmatic nucleusSomatostatin-containing neuronsStimulation ex vivoAmphetamine-induced hyperlocomotionRegulation of locomotionDopamine outputChemogenetic inhibitionNeuropeptidergic innervationPeriventricular nucleusChemogenetic manipulationHypothalamic lociSynaptic targetsAnterior subdivisionEx vivoBrain clockNeuronsSedentary periodL activityHyperlocomotionCellular targetsMicePeVNInnervationTET3 epigenetically controls feeding and stress response behaviors via AGRP neurons
Xie D, Stutz B, Li F, Chen F, Lv H, Sestan-Pesa M, Catarino J, Gu J, Zhao H, Stoddard CE, Carmichael GG, Shanabrough M, Taylor HS, Liu ZW, Gao XB, Horvath TL, Huang Y. TET3 epigenetically controls feeding and stress response behaviors via AGRP neurons. Journal Of Clinical Investigation 2022, 132: e162365. PMID: 36189793, PMCID: PMC9525119, DOI: 10.1172/jci162365.Peer-Reviewed Original ResearchConceptsAgRP neuronsNeuropeptide YExpression of AgRPControl of feedingHypothalamic agoutiAnxiolytic effectsNeurotransmitter GABAMouse modelLeptin signalingStress-like behaviorsGenetic ablationNeuronsAgRPCritical central regulatorsEnergy expenditureGABAEnergy metabolismAppetiteFeedingCentral regulatorMetabolismCentral controlHuman cellsTET3ObesityVentromedial hypothalamic OGT drives adipose tissue lipolysis and curbs obesity
Wang Q, Zhang B, Stutz B, Liu ZW, Horvath TL, Yang X. Ventromedial hypothalamic OGT drives adipose tissue lipolysis and curbs obesity. Science Advances 2022, 8: eabn8092. PMID: 36044565, PMCID: PMC9432828, DOI: 10.1126/sciadv.abn8092.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsBody WeightHypothalamusLipolysisMiceN-AcetylglucosaminyltransferasesObesityConceptsVentromedial hypothalamusWhite adipose tissueVMH neuronsAdipose tissueBody weightLipid metabolismRapid weight gainCounterregulatory responsesSympathetic activitySympathetic innervationAdipocyte hypertrophyTissue lipolysisNeuronal excitabilityFood intakePhysical activityObesity phenotypesGenetic ablationWeight gainHomeostatic set pointEnergy expenditureNeuronsInnervationLipolysisSignificant changesCellular sensorsAgRP neurons control structure and function of the medial prefrontal cortex
Stutz B, Waterson MJ, Šestan-Peša M, Dietrich MO, Škarica M, Sestan N, Racz B, Magyar A, Sotonyi P, Liu ZW, Gao XB, Matyas F, Stoiljkovic M, Horvath TL. AgRP neurons control structure and function of the medial prefrontal cortex. Molecular Psychiatry 2022, 27: 3951-3960. PMID: 35906488, PMCID: PMC9891653, DOI: 10.1038/s41380-022-01691-8.Peer-Reviewed Original ResearchMeSH KeywordsAgouti-Related ProteinAnimalsDopaminergic NeuronsHypothalamusMiceNeuropeptide YPrefrontal CortexConceptsMedial prefrontal cortexAgRP neuronsNon-selective dopamine receptor antagonistBrain functionPrefrontal cortexHypothalamic AgRP neuronsMedial thalamic neuronsAdministration of clozapineDopamine receptor antagonistVentral tegmental areaOscillatory network activityHigher-order brain functionsHypothalamic agoutiThalamic neuronsChemogenetic inhibitionDopaminergic neuronsReceptor antagonistTegmental areaNeuronal pathwaysSensorimotor gatingAdult miceModulatory impactAmbulatory behaviorConstitutive impairmentNeuronsA hypothalamic pathway for Augmentor α–controlled body weight regulation
Ahmed M, Kaur N, Cheng Q, Shanabrough M, Tretiakov EO, Harkany T, Horvath TL, Schlessinger J. A hypothalamic pathway for Augmentor α–controlled body weight regulation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2200476119. PMID: 35412887, PMCID: PMC9169862, DOI: 10.1073/pnas.2200476119.Peer-Reviewed Original ResearchConceptsParaventricular nucleusBody weightDiet-induced obesityBody weight regulationDiscrete neuronal populationsMelanocortin receptor 4Whole-body energy homeostasisPhysiological rolePeptide neuronsHypothalamic pathwaysReceptor 4Neuronal pathwaysPhysical activityLittermate controlsWeight regulationNeuronal populationsMetabolic diseasesTherapeutic opportunitiesMutant miceEnergy homeostasisMiceALKCancerHuman cancersALK mutants
2021
Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward auto-activation loop in mice
Varela L, Stutz B, Song JE, Kim JG, Liu ZW, Gao XB, Horvath TL. Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward auto-activation loop in mice. Journal Of Clinical Investigation 2021, 131 PMID: 33848272, PMCID: PMC8121506, DOI: 10.1172/jci144239.Peer-Reviewed Original ResearchConceptsAgRP neuronsHypothalamic feeding circuitsInhibitory neurotransmitter GABAGhrelin administrationInhibitory toneAstrocytic responseMetabolic milieuProstaglandin E2Neurotransmitter GABANeuronal controlSynaptic plasticityGlial processesNeuronsNeural excitationMitochondrial adaptationsFood deprivationAstrocytesPerikaryaFeeding circuitRegion crucialFeedingObesityGABAExcitabilityChemogeneticsObesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension
Gruber T, Pan C, Contreras RE, Wiedemann T, Morgan DA, Skowronski AA, Lefort S, De Bernardis Murat C, Le Thuc O, Legutko B, Ruiz-Ojeda FJ, de la Fuente-Fernández M, García-Villalón AL, González-Hedström D, Huber M, Szigeti-Buck K, Müller TD, Ussar S, Pfluger P, Woods SC, Ertürk A, LeDuc CA, Rahmouni K, Granado M, Horvath TL, Tschöp MH, García-Cáceres C. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metabolism 2021, 33: 1155-1170.e10. PMID: 33951475, PMCID: PMC8183500, DOI: 10.1016/j.cmet.2021.04.007.Peer-Reviewed Original ResearchConceptsBlood pressureObesity-associated increaseObesity-induced hypertensionElevated blood pressureSystemic blood pressureEndothelial growth factorHIF1α-VEGFArterial hypertensionNovel mechanistic linkSympathetic hyperactivityHemodynamic homeostasisHypothalamic astrocytesMetabolic syndromeRegion-specific lossMacrovascular systemsLeptin signalingBrain centersPathophysiological processesHypertensionGliovascular interfacePathway disruptionGrowth factorAstrocytesMechanistic linkAngiopathyDefective autophagy in Sf1 neurons perturbs the metabolic response to fasting and causes mitochondrial dysfunction
Coupé B, Leloup C, Asiedu K, Maillard J, Pénicaud L, Horvath TL, Bouret SG. Defective autophagy in Sf1 neurons perturbs the metabolic response to fasting and causes mitochondrial dysfunction. Molecular Metabolism 2021, 47: 101186. PMID: 33571700, PMCID: PMC7907893, DOI: 10.1016/j.molmet.2021.101186.Peer-Reviewed Original ResearchConceptsLoss of Atg7Energy homeostasisCellular homeostasisGene Atg7Defective autophagyMitochondria morphologyPhysiological processesCellular responsesCellular componentsMetabolic responseMitochondrial dysfunctionAutophagyAtg7SF1 neuronsHomeostasisMutant miceNeurons displayLoxP/Energy expenditure regulationImportant roleVMH neuronsVentromedial nucleusLeptin sensitivityStarvationCentral response
2020
Impaired hypocretin/orexin system alters responses to salient stimuli in obese male mice
Tan Y, Hang F, Liu ZW, Stoiljkovic M, Wu M, Tu Y, Han W, Lee AM, Kelley C, Hajos M, Lu L, de Lecea L, de Araujo I, Picciotto M, Horvath TL, Gao XB. Impaired hypocretin/orexin system alters responses to salient stimuli in obese male mice. Journal Of Clinical Investigation 2020, 130: 4985-4998. PMID: 32516139, PMCID: PMC7456212, DOI: 10.1172/jci130889.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsFeeding BehaviorHypothalamusMaleMiceMice, TransgenicNerve NetNeuronsObesityOrexinsStress, PsychologicalConceptsHcrt cellsObese miceDiet-induced obese miceObese male miceExcessive energy intakeNeuropeptide hypocretin/orexinHypocretin/orexinHcrt neuronsMale miceHcrt systemClinical studiesCommon causeSynaptic transmissionObese animalsEnergy intakeAcute stressCognitive functionSalient stimuliAlters responsesExact mechanismMiceHomeostatic regulationNeuronal networksBehavioral changesNeuronsMetabolic Lateralization in the Hypothalamus of Male Rats Related to Reproductive and Satiety States
Kiss DS, Toth I, Jocsak G, Bartha T, Frenyo LV, Barany Z, Horvath TL, Zsarnovszky A. Metabolic Lateralization in the Hypothalamus of Male Rats Related to Reproductive and Satiety States. Reproductive Sciences 2020, 27: 1197-1205. PMID: 32046448, PMCID: PMC7181557, DOI: 10.1007/s43032-019-00131-3.Peer-Reviewed Original ResearchConceptsSatiety stateMale ratsFood intakeImpact of gonadectomyRight hemisphereSleep-wake behaviorHypothalamic functionMale rodentsMetabolic asymmetryScheduled feedingFunctional lateralizationHypothalamusEx vivoRegulatory centersRatsMetabolic differencesHomeostatic processesFunctional asymmetryIntakeLateralizationRecent findingsPresent studyReproductive controlGonadectomySatiety
2019
Metabolism: A Burning Opioid Issue in Obesity Therapeutics
da Silva Catarino J, Horvath TL. Metabolism: A Burning Opioid Issue in Obesity Therapeutics. Current Biology 2019, 29: r1323-r1325. PMID: 31846684, DOI: 10.1016/j.cub.2019.10.055.Peer-Reviewed Original ResearchParallel Paths in PVH Control of Feeding
Varela L, Horvath TL. Parallel Paths in PVH Control of Feeding. Neuron 2019, 102: 514-516. PMID: 31071283, DOI: 10.1016/j.neuron.2019.04.026.Peer-Reviewed Original Research
2018
Effects of myeloid sirtuin 1 deficiency on hypothalamic neurogranin in mice fed a high-fat diet
Kim KE, Jeong EA, Shin HJ, Lee JY, Choi EB, An HS, Park KA, Jin Z, Lee DK, Horvath TL, Roh GS. Effects of myeloid sirtuin 1 deficiency on hypothalamic neurogranin in mice fed a high-fat diet. Biochemical And Biophysical Research Communications 2018, 508: 123-129. PMID: 30471862, DOI: 10.1016/j.bbrc.2018.11.126.Peer-Reviewed Original ResearchConceptsHigh-fat dietHypothalamic inflammationSIRT1 deletionWT miceInsulin resistanceKO miceFood intakeNeurogranin expressionParvalbumin protein levelsSIRT1 knockout miceAnorexigenic proopiomelanocortinArcuate nucleusVentromedial hypothalamusHigher food intakeHFDKnockout miceLow expressionMiceWeight gainInflammationProtein levelsNeurograninHypothalamusIntakeDietMild Impairment of Mitochondrial OXPHOS Promotes Fatty Acid Utilization in POMC Neurons and Improves Glucose Homeostasis in Obesity
Timper K, Paeger L, Sánchez-Lasheras C, Varela L, Jais A, Nolte H, Vogt MC, Hausen AC, Heilinger C, Evers N, Pospisilik JA, Penninger JM, Taylor EB, Horvath TL, Kloppenburg P, Brüning JC. Mild Impairment of Mitochondrial OXPHOS Promotes Fatty Acid Utilization in POMC Neurons and Improves Glucose Homeostasis in Obesity. Cell Reports 2018, 25: 383-397.e10. PMID: 30304679, PMCID: PMC6349418, DOI: 10.1016/j.celrep.2018.09.034.Peer-Reviewed Original ResearchConceptsPOMC neuronsApoptosis-inducing factorImproved glucose metabolismFatty acid utilizationDecrease firingPomc-CreFatty acid metabolismHFD feedingReactive oxygen species formationSystemic glucoseHypothalamic proopiomelanocortinLean miceMitochondrial respirationObese miceObese conditionsInsulin sensitivityGlucose homeostasisGlucose metabolismMild impairmentOxygen species formationFiring propertiesNeuronsOxidative phosphorylationMicePartial impairmentInsulin regulates POMC neuronal plasticity to control glucose metabolism
Dodd GT, Michael NJ, Lee-Young RS, Mangiafico SP, Pryor JT, Munder AC, Simonds SE, Brüning JC, Zhang ZY, Cowley MA, Andrikopoulos S, Horvath TL, Spanswick D, Tiganis T. Insulin regulates POMC neuronal plasticity to control glucose metabolism. ELife 2018, 7: e38704. PMID: 30230471, PMCID: PMC6170188, DOI: 10.7554/elife.38704.Peer-Reviewed Original ResearchConceptsHepatic glucose productionPOMC neuronsSuch adaptive processesNutritional cuesGene expressionMolecular mechanismsGlucose metabolismInsulin receptorDiet-induced obesityTCPTPNeuronal plasticityAdaptive processHypothalamic neuronsNeuronal excitabilityGlucose productionMetabolismInsulinNeuronsRepressionNeural responsesObesityRegulationMechanismPlasticityExpressionHypothalamic CNTF volume transmission shapes cortical noradrenergic excitability upon acute stress
Alpár A, Zahola P, Hanics J, Hevesi Z, Korchynska S, Benevento M, Pifl C, Zachar G, Perugini J, Severi I, Leitgeb P, Bakker J, Miklosi AG, Tretiakov E, Keimpema E, Arque G, Tasan RO, Sperk G, Malenczyk K, Máté Z, Erdélyi F, Szabó G, Lubec G, Palkovits M, Giordano A, Hökfelt TG, Romanov RA, Horvath TL, Harkany T. Hypothalamic CNTF volume transmission shapes cortical noradrenergic excitability upon acute stress. The EMBO Journal 2018, 37: embj2018100087. PMID: 30209240, PMCID: PMC6213283, DOI: 10.15252/embj.2018100087.Peer-Reviewed Original ResearchConceptsHypothalamic activationVolume transmissionAcute stressNeurotrophic factor releaseNorepinephrinergic neuronsNoradrenergic neuronsCortical excitabilityMultimodal pathwaysNoradrenaline synthesisLocus coeruleusNeuronal excitationExtracellular signal-regulated kinases 1Norepinephrine synthesisTyrosine hydroxylaseEpendymal cellsSignal-regulated kinases 1ExcitabilityPrefrontal cortexFactor releaseCognate receptorsNeuronsHuman brainKinase 1CNTFActivationViral Vectors for Studying Brain Mechanisms that Control Energy Homeostasis
Mancini G, Horvath TL. Viral Vectors for Studying Brain Mechanisms that Control Energy Homeostasis. Cell Metabolism 2018, 27: 1168-1175. PMID: 29874565, DOI: 10.1016/j.cmet.2018.05.015.Peer-Reviewed Original Research