2024
Publisher Correction: Tissue spaces are reservoirs of antigenic diversity for Trypanosoma brucei
Beaver A, Keneskhanova Z, Cosentino R, Weiss B, Awuoche E, Smallenberger G, Buenconsejo G, Crilly N, Smith J, Hakim J, Zhang B, Bobb B, Rijo-Ferreira F, Figueiredo L, Aksoy S, Siegel T, Mugnier M. Publisher Correction: Tissue spaces are reservoirs of antigenic diversity for Trypanosoma brucei. Nature 2024, 636: e3-e3. PMID: 39550527, PMCID: PMC11634761, DOI: 10.1038/s41586-024-08389-7.Peer-Reviewed Original ResearchTissue spaces are reservoirs of antigenic diversity for Trypanosoma brucei
Beaver A, Keneskhanova Z, Cosentino R, Weiss B, Awuoche E, Smallenberger G, Buenconsejo G, Crilly N, Smith J, Hakim J, Zhang B, Bobb B, Rijo-Ferreira F, Figueiredo L, Aksoy S, Siegel T, Mugnier M. Tissue spaces are reservoirs of antigenic diversity for Trypanosoma brucei. Nature 2024, 636: 430-437. PMID: 39478231, PMCID: PMC11634766, DOI: 10.1038/s41586-024-08151-z.Peer-Reviewed Original ResearchVariant surface glycoproteinAntigenic diversityAntigenic variationHigh-throughput sequencing approachDense variant surface glycoproteinPopulations of T. bruceiDynamics of antigenic variationGenomic repertoirePathogen diversificationSequencing approachExtravascular spaceTrypanosoma bruceiVariation in vivoHost immune systemAntigenic variation in vivoSurface glycoproteinSlow immune responseDiversitySwitching expressionParasite populations
2023
Genomic evidence of sex chromosome aneuploidy and infection-associated genotypes in the tsetse fly Glossina fuscipes, the major vector of African trypanosomiasis in Uganda
Saarman N, Son J, Zhao H, Cosme L, Kong Y, Li M, Wang S, Weiss B, Echodu R, Opiro R, Aksoy S, Caccone A. Genomic evidence of sex chromosome aneuploidy and infection-associated genotypes in the tsetse fly Glossina fuscipes, the major vector of African trypanosomiasis in Uganda. Infection Genetics And Evolution 2023, 114: 105501. PMID: 37709241, PMCID: PMC10593118, DOI: 10.1016/j.meegid.2023.105501.Peer-Reviewed Original ResearchConceptsGenome-wide association analysisNovel vector control strategiesAnimal African trypanosomiasisSex chromosome aneuploidyNatural populationsGenome assemblySex chromosomesGenomic regionsGenomic evidenceGenetic variationBp upstreamAutosomal SNPsSeq dataTrypanosome infectionTrypanosome parasitesAssociation analysisMolecular pathwaysAssembly metricsLinkage disequilibriumLecithin-cholesterol acyltransferaseAfrican trypanosomiasisMajor vectorGenomeSNPsPrimary vectorLipid metabolism dysfunction following symbiont elimination is linked to altered Kennedy pathway homeostasis
Attardo G, Benoit J, Michalkova V, Kondragunta A, Baumann A, Weiss B, Malacrida A, Scolari F, Aksoy S. Lipid metabolism dysfunction following symbiont elimination is linked to altered Kennedy pathway homeostasis. IScience 2023, 26: 107108. PMID: 37534171, PMCID: PMC10391724, DOI: 10.1016/j.isci.2023.107108.Peer-Reviewed Original ResearchKennedy pathwayObligate endosymbiotic bacteriaViviparous tsetse flyLipid metabolismEarly developmental stagesInsect reproductionEndosymbiotic bacteriaSymbiotic bacteriaLipid biosynthesisPathway homeostasisSymbiont eliminationFunctional validationExperimental removalPhosphatidylcholine biosynthesisDevelopmental stagesProper functionTsetse fliesBiosynthesisLipid metabolism dysfunctionImpaired lipid metabolismMetabolismBacteriaPathwayMetabolism dysfunctionSymbiontsMicrobiota in disease-transmitting vectors
Wang J, Gao L, Aksoy S. Microbiota in disease-transmitting vectors. Nature Reviews Microbiology 2023, 21: 604-618. PMID: 37217793, DOI: 10.1038/s41579-023-00901-6.Peer-Reviewed Original ResearchConceptsSymbiotic associationVector-borne diseasesDisease-transmitting vectorsAlternative control methodsVector competenceUnique key featuresHealth of humansSymbiotic microorganismsVector taxaReproductive strategiesArthropod hostsLife historyVector arthropodsHaematophagous arthropodsTriatomine bugsBlood feedVector populationsTransmission successArthropodsFeeding behaviorCurrent knowledgeMicrobiotaPathogensKnowledge gapsTaxa
2022
Tsetse Paratransgenesis: a Novel Strategy for Reducing the Spread of African Trypanosomiases
Weiss B, Yang L, Aksoy S. Tsetse Paratransgenesis: a Novel Strategy for Reducing the Spread of African Trypanosomiases. 2022, 279-295. DOI: 10.1079/9781800621176.0013.Peer-Reviewed Original ResearchWarm Blood Meal Increases Digestion Rate and Milk Protein Production to Maximize Reproductive Output for the Tsetse Fly, Glossina morsitans
Benoit J, Lahondère C, Attardo G, Michalkova V, Oyen K, Xiao Y, Aksoy S. Warm Blood Meal Increases Digestion Rate and Milk Protein Production to Maximize Reproductive Output for the Tsetse Fly, Glossina morsitans. Insects 2022, 13: 997. PMID: 36354821, PMCID: PMC9695897, DOI: 10.3390/insects13110997.Peer-Reviewed Original ResearchMicrobe Profile: Wigglesworthia glossinidia: the tsetse fly’s significant other
Weiss BL, Rio RVM, Aksoy S. Microbe Profile: Wigglesworthia glossinidia: the tsetse fly’s significant other. Microbiology 2022, 168: 001242. PMID: 36129743, PMCID: PMC10723186, DOI: 10.1099/mic.0.001242.Peer-Reviewed Original ResearchConceptsPhysiological homeostasisNutritional roleEssential nutritional roleUnique physiological adaptationsTsetse fliesFly microbiotaWigglesworthia glossinidiaObligate mutualistsHost fitnessAncient associationParasitic trypanosomesLarval periodPhysiological adaptationsFitness outcomesTsetse's abilityAntimicrobial responsesImmune systemAmidasesFliesMicrobiotaMutualistsWigglesworthiaEndosymbiontsGenomeB vitamins
2021
Viviparity and habitat restrictions may influence the evolution of male reproductive genes in tsetse fly (Glossina) species
Savini G, Scolari F, Ometto L, Rota-Stabelli O, Carraretto D, Gomulski LM, Gasperi G, Abd-Alla AMM, Aksoy S, Attardo GM, Malacrida AR. Viviparity and habitat restrictions may influence the evolution of male reproductive genes in tsetse fly (Glossina) species. BMC Biology 2021, 19: 211. PMID: 34556101, PMCID: PMC8461966, DOI: 10.1186/s12915-021-01148-4.Peer-Reviewed Original ResearchConceptsMale reproductive genesReproductive genesSelective pressureHabitat restrictionLong evolutionary time scalesFunctional selective pressuresPost-zygotic isolationComparative genomics approachReproductive behaviorEvolutionary time scalesUnique reproductive strategyLong evolutionary historyStrong selective pressureDivergent demographic historiesMale reproductive biologyTsetse fly speciesGenomic conflictAdenotrophic viviparityParental genomesGenomic approachesAllopatric distributionsEvolutionary historyDemographic historyReproductive biologyEvolutionary treeInfection with endosymbiotic Spiroplasma disrupts tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis
Son JH, Weiss BL, Schneider DI, Dera KM, Gstöttenmayer F, Opiro R, Echodu R, Saarman NP, Attardo GM, Onyango M, Abdalla A, Aksoy S. Infection with endosymbiotic Spiroplasma disrupts tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis. PLOS Pathogens 2021, 17: e1009539. PMID: 34529715, PMCID: PMC8478229, DOI: 10.1371/journal.ppat.1009539.Peer-Reviewed Original ResearchConceptsReproductive fitnessSpiroplasma infectionSex-biased gene expressionHigh-throughput RNA sequencingReproductive physiologyIntrauterine larval developmentMale reproductive fitnessPathogenic African trypanosomesEndosymbiotic bacteriaFly resistanceTsetse fecundityFemale spermathecaFemale fecundityRNA sequencingLarval developmentSpiroplasmaGene expressionAfrican trypanosomesReproductive tissuesReproductive homeostasisTsetse hostHuman diseasesPopulation sizeProtective phenotypeLab linesA machine learning approach to integrating genetic and ecological data in tsetse flies (Glossina pallidipes) for spatially explicit vector control planning
Bishop AP, Amatulli G, Hyseni C, Pless E, Bateta R, Okeyo WA, Mireji PO, Okoth S, Malele I, Murilla G, Aksoy S, Caccone A, Saarman NP. A machine learning approach to integrating genetic and ecological data in tsetse flies (Glossina pallidipes) for spatially explicit vector control planning. Evolutionary Applications 2021, 14: 1762-1777. PMID: 34295362, PMCID: PMC8288027, DOI: 10.1111/eva.13237.Peer-Reviewed Original ResearchGenetic dataVectors of humanLake Victoria basinAnimal African trypanosomiasisGenetic connectivityVector-borne disease transmissionFuture monitoring effortsMicrosatellite lociHabitat useImportant environmental predictorsHabitat suitabilityFuture climatic changesDispersal patternsVictoria basinEcological dataEnvironmental predictorsVector systemTsetse fliesTsetse speciesClimatic shiftsFliesClimatic changesSampling sitesMonitoring effortsVector control
2020
Vector-borne Zoonotic Diseases in Turkey: Rising Threats on Public Health
Düzlü Ö, İnci A, Yıldırım A, Doğanay M, Özbel Y, Aksoy S. Vector-borne Zoonotic Diseases in Turkey: Rising Threats on Public Health. Turkish Journal Of Parasitology 2020, 44: 168-175. PMID: 32928726, DOI: 10.4274/tpd.galenos.2020.6985.Peer-Reviewed Original ResearchConceptsVector-borne zoonotic diseasePublic healthZoonotic diseaseRe-emerging arbovirusWorld Health OrganizationSuch infectionsZoonotic infectionMosquito-borneArthropod speciesDiseaseHabitat featuresHealth OrganizationPathogen transmission patternsAlarming increaseClimate-related changesFly-borne diseasesGlobal healthInfectionHealthMigratory patternsNew control programsAnimal welfareFuture control effortsTransmission patternsControl programsSingle-cell RNA sequencing of Trypanosoma brucei from tsetse salivary glands unveils metacyclogenesis and identifies potential transmission blocking antigens
Vigneron A, O'Neill MB, Weiss BL, Savage AF, Campbell OC, Kamhawi S, Valenzuela JG, Aksoy S. Single-cell RNA sequencing of Trypanosoma brucei from tsetse salivary glands unveils metacyclogenesis and identifies potential transmission blocking antigens. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 2613-2621. PMID: 31964820, PMCID: PMC7007551, DOI: 10.1073/pnas.1914423117.Peer-Reviewed Original ResearchConceptsSingle-cell RNA sequencingRNA sequencingInfectious metacyclic formsMetacyclic parasitesMammalian host environmentFly salivary glandsMajor cell clustersClustering of cellsTsetse salivary glandsFamily proteinsDevelopmental programMammalian hostsMetacyclic cellsProtein transcriptsTrypanosoma bruceiDevelopmental processesGene expressionAfrican trypanosomesExpression profilesMolecular mechanismsSalivary glandsNew hostSurface localizationTrypanosome transmissionMetacyclogenesis
2019
Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes
Attardo GM, Abd-Alla AMM, Acosta-Serrano A, Allen JE, Bateta R, Benoit JB, Bourtzis K, Caers J, Caljon G, Christensen MB, Farrow DW, Friedrich M, Hua-Van A, Jennings EC, Larkin DM, Lawson D, Lehane MJ, Lenis VP, Lowy-Gallego E, Macharia RW, Malacrida AR, Marco HG, Masiga D, Maslen GL, Matetovici I, Meisel RP, Meki I, Michalkova V, Miller WJ, Minx P, Mireji PO, Ometto L, Parker AG, Rio R, Rose C, Rosendale AJ, Rota-Stabelli O, Savini G, Schoofs L, Scolari F, Swain MT, Takáč P, Tomlinson C, Tsiamis G, Van Den Abbeele J, Vigneron A, Wang J, Warren WC, Waterhouse RM, Weirauch MT, Weiss BL, Wilson RK, Zhao X, Aksoy S. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biology 2019, 20: 187. PMID: 31477173, PMCID: PMC6721284, DOI: 10.1186/s13059-019-1768-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDNA Transposable ElementsDrosophila melanogasterFemaleGene Expression RegulationGenes, InsectGenes, X-LinkedGenome, InsectGenomicsGeographyInsect ProteinsInsect VectorsMaleMutagenesis, InsertionalPhylogenyRepetitive Sequences, Nucleic AcidSequence Homology, Amino AcidSyntenyTrypanosomaTsetse FliesWolbachiaConceptsFemale-specific gene expressionMale seminal proteinsSex-linked scaffoldsComparative genomic analysisLow evolutionary ratesVectors of humanSyntenic analysisEvolutionary ratesNovel pestsEvolutionary relationshipsBacterial symbiosisGustatory genesEvolutionary biologyHelicase activityStructural conservationDifferent habitatsSeminal proteinsGenomic analysisHost preferenceX chromosomeDisease control strategiesUnique adaptationsGene expressionAfrican trypanosomesRhodopsin geneColonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment
Weiss BL, Maltz MA, Vigneron A, Wu Y, Walter KS, O’Neill M, Wang J, Aksoy S. Colonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment. PLOS Pathogens 2019, 15: e1007470. PMID: 30817773, PMCID: PMC6394900, DOI: 10.1371/journal.ppat.1007470.Peer-Reviewed Original ResearchConceptsRefractory phenotypeEnormous socio-economic burdenWild-type counterpartsInfection establishmentSocio-economic burdenMidgut environmentEntomopathogenic Serratia marcescensEndemic regionsPathogenic trypanosomesInfectionStable infectionAdverse effectsAnimal African trypanosomiasesVector competenceGutCurrent disease control strategiesSaharan AfricaDisease control strategiesSurvivalSerratia marcescensTsetse gutExogenous bacteriumFly survivalNovel strategyPhenotype
2018
A fine-tuned vector-parasite dialogue in tsetse's cardia determines peritrophic matrix integrity and trypanosome transmission success
Vigneron A, Aksoy E, Weiss BL, Bing X, Zhao X, Awuoche EO, O'Neill MB, Wu Y, Attardo GM, Aksoy S. A fine-tuned vector-parasite dialogue in tsetse's cardia determines peritrophic matrix integrity and trypanosome transmission success. PLOS Pathogens 2018, 14: e1006972. PMID: 29614112, PMCID: PMC5898766, DOI: 10.1371/journal.ppat.1006972.Peer-Reviewed Original Research
2017
Unravelling the relationship between the tsetse fly and its obligate symbiont Wigglesworthia: transcriptomic and metabolomic landscapes reveal highly integrated physiological networks
Bing X, Attardo GM, Vigneron A, Aksoy E, Scolari F, Malacrida A, Weiss BL, Aksoy S. Unravelling the relationship between the tsetse fly and its obligate symbiont Wigglesworthia: transcriptomic and metabolomic landscapes reveal highly integrated physiological networks. Proceedings Of The Royal Society B 2017, 284: 20170360. PMID: 28659447, PMCID: PMC5489720, DOI: 10.1098/rspb.2017.0360.Peer-Reviewed Original ResearchConceptsPeptidoglycan recognition proteinsAfrican trypanosome parasitesTsetse fliesAmino acid metabolismWigglesworthia glossinidiaMultiple metabolic pathwaysObligate endosymbiontsMolecular chaperonesTransport machineryVertebrate bloodMetabolomic landscapeRecognition proteinsSeq analysisSymbiotic dialogueNucleotide biosynthesisAdenosyl methionineBiological functionsSpecialized cellsTsetse survivalTrypanosome parasitesEssential cofactorMetabolic pathwaysNew biological targetsAcid metabolismPhysiological networksHuman African trypanosomiasis control: Achievements and challenges
Aksoy S, Buscher P, Lehane M, Solano P, Van Den Abbeele J. Human African trypanosomiasis control: Achievements and challenges. PLOS Neglected Tropical Diseases 2017, 11: e0005454. PMID: 28426685, PMCID: PMC5398477, DOI: 10.1371/journal.pntd.0005454.Peer-Reviewed Original ResearchPreface
Wikel S, Aksoy S, Dimopoulos G. Preface. 2017, xv-xvi. DOI: 10.1016/b978-0-12-805350-8.05001-7.Peer-Reviewed Original ResearchPreface
Wikel S, Aksoy S, Dimopoulos G. Preface. 2017, xv-xvi. DOI: 10.1016/b978-0-12-805360-7.05001-2.Peer-Reviewed Original Research