Comparison of Volumetric and 2D Measurements and Longitudinal Trajectories in the Response Assessment of BRAF V600E-Mutant Pediatric Gliomas in the Pacific Pediatric Neuro-Oncology Consortium Clinical Trial
Ramakrishnan D, Brüningk S, von Reppert M, Memon F, Maleki N, Aneja S, Kazerooni A, Nabavizadeh A, Lin M, Bousabarah K, Molinaro A, Nicolaides T, Prados M, Mueller S, Aboian M. Comparison of Volumetric and 2D Measurements and Longitudinal Trajectories in the Response Assessment of BRAF V600E-Mutant Pediatric Gliomas in the Pacific Pediatric Neuro-Oncology Consortium Clinical Trial. American Journal Of Neuroradiology 2024, 45: 475-482. PMID: 38453411, PMCID: PMC11288571, DOI: 10.3174/ajnr.a8189.Peer-Reviewed Original ResearchArea under the curvePediatric gliomasBT-RADSResponse assessmentPartial responseClinical trialsVolumetric analysisReceiver operating characteristic analysisBrain Tumor ReportingReceiver operating characteristic curveModel estimation timeOperating characteristic analysisEvaluate treatment efficacyStable diseasePartial respondersManual volumetric segmentationNo significant differenceSolid tumorsProspective studyTumor ReportingClinical decision-makingTreatment efficacyGliomaSignificant differenceCharacteristic curveEnhancing clinical decision-making: An externally validated machine learning model for predicting isocitrate dehydrogenase mutation in gliomas using radiomics from presurgical magnetic resonance imaging
Lost J, Ashraf N, Jekel L, von Reppert M, Tillmanns N, Willms K, Merkaj S, Petersen G, Avesta A, Ramakrishnan D, Omuro A, Nabavizadeh A, Bakas S, Bousabarah K, Lin M, Aneja S, Sabel M, Aboian M. Enhancing clinical decision-making: An externally validated machine learning model for predicting isocitrate dehydrogenase mutation in gliomas using radiomics from presurgical magnetic resonance imaging. Neuro-Oncology Advances 2024, 6: vdae157. PMID: 39659829, PMCID: PMC11630777, DOI: 10.1093/noajnl/vdae157.Peer-Reviewed Original ResearchIsocitrate dehydrogenase mutation statusArea under the curveMagnetic resonance imagingMutation statusML modelsMachine learningSemi-automated tumour segmentationsPre-surgical magnetic resonance imagingCare of glioma patientsMachine learning modelsClinical care of glioma patientsIsocitrate dehydrogenase statusAnnotated datasetsFeature extractionPrediction taskMulti-institutional dataModel trainingIDH mutationsPredicting IDH mutationLearning modelsRetrospective studyHeterogeneous datasetsTumor segmentationGlioma patientsBrain tumors