2024
Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer
Robles-Oteíza C, Hastings K, Choi J, Sirois I, Ravi A, Expósito F, de Miguel F, Knight J, López-Giráldez F, Choi H, Socci N, Merghoub T, Awad M, Getz G, Gainor J, Hellmann M, Caron É, Kaech S, Politi K. Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer. Journal Of Experimental Medicine 2024, 222: e20231106. PMID: 39585348, PMCID: PMC11602551, DOI: 10.1084/jem.20231106.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsNon-small cell lung cancerAcquired resistanceCheckpoint inhibitorsResistant tumorsPatients treated with anti-PD-1/PD-L1 therapyAnti-PD-1/PD-L1 therapyLung cancerResistance to immune checkpoint inhibitorsAssociated with decreased progression-free survivalHypoxia activated pro-drugsTargeting hypoxic tumor regionsTreat non-small cell lung cancerAnti-CTLA-4Anti-PD-1Immune checkpoint inhibitionTumor metabolic featuresProgression-free survivalCell lung cancerResistant cancer cellsHypoxic tumor regionsMHC-II levelsRegions of hypoxiaKnock-outCheckpoint inhibitionEP.07C.10 Real-World Outcomes of Patients Treated with Neoadjuvant Immunotherapy for Resectable Non-Small Cell Lung Cancer
Ermer T, Kim S, Goldberg S, Zolfaghari E, Blasberg J, Boffa D, Herbst R, Politi K, Schalper K, Dacic S, Woodard G. EP.07C.10 Real-World Outcomes of Patients Treated with Neoadjuvant Immunotherapy for Resectable Non-Small Cell Lung Cancer. Journal Of Thoracic Oncology 2024, 19: s543-s544. DOI: 10.1016/j.jtho.2024.09.1007.Peer-Reviewed Original ResearchChitinase 3-like-1 (CHI3L1) in the pathogenesis of epidermal growth factor receptor mutant non-small cell lung cancer
Kamle S, Ma B, Schor G, Bailey M, Pham B, Cho I, Khan H, Azzoli C, Hofstetter M, Sadanaga T, Herbst R, Politi K, Lee C, Elias J. Chitinase 3-like-1 (CHI3L1) in the pathogenesis of epidermal growth factor receptor mutant non-small cell lung cancer. Translational Oncology 2024, 49: 102108. PMID: 39178575, PMCID: PMC11388375, DOI: 10.1016/j.tranon.2024.102108.Peer-Reviewed Original ResearchNon-small cell lung cancerEpidermal growth factor receptorTyrosine kinase inhibitorsEpidermal growth factor receptor mutant non-small cell lung cancerMutant non-small cell lung cancerEpidermal growth factor receptor axisCell lung cancerLung cancerTherapeutic resistanceDownstream targets of EGFRResistance to TKI therapyEpithelial cellsStimulated epidermal growth factor receptorWild type epidermal growth factor receptorTargeting of epidermal growth factor receptorActivating EGFR mutationsChitinase 3-like 1Progression free survivalInduce tumor cell deathEpidermal growth factor receptor activationEffects of EGFR activationInhibited pulmonary metastasisTumor cell deathResponse to treatmentGrowth factor receptorAuthor Correction: Mechanisms and clinical activity of an EGFR and HER2 exon 20–selective kinase inhibitor in non–small cell lung cancer
Robichaux J, Elamin Y, Tan Z, Carter B, Zhang S, Liu S, Li S, Chen T, Poteete A, Estrada-Bernal A, Le A, Truini A, Nilsson M, Sun H, Roarty E, Goldberg S, Brahmer J, Altan M, Lu C, Papadimitrakopoulou V, Politi K, Doebele R, Wong K, Heymach J. Author Correction: Mechanisms and clinical activity of an EGFR and HER2 exon 20–selective kinase inhibitor in non–small cell lung cancer. Nature Medicine 2024, 30: 2694-2695. PMID: 39164519, DOI: 10.1038/s41591-024-03178-1.Peer-Reviewed Original ResearchComprehensive characterization of ERBB2 genomic alterations inlung cancer.
El Zarif T, Stockhammer P, Schillo J, Goldberg S, Politi K, Grant M. Comprehensive characterization of ERBB2 genomic alterations inlung cancer. Journal Of Clinical Oncology 2024, 42: 3148-3148. DOI: 10.1200/jco.2024.42.16_suppl.3148.Peer-Reviewed Original ResearchNon-small cell lung cancerProgression-free survivalShorter progression-free survivalTyrosine kinase domainSystemic therapyCo-mutationsClinical characteristics of non-small cell lung cancerCharacteristics of non-small cell lung cancerFirst-line platinum-based chemotherapyMedian tumor mutation burdenNon-small cell lung cancer tumorsFirst-line systemic therapyTP53 co-mutationsPlatinum-based chemotherapyTumor mutational burdenKaplan-Meier methodCell lung cancerLog-rank testOptimal treatment strategyHistory of smokingCopy number profilesTumor profile dataJuxtamembrane domainSquamous histologyTrastuzumab deruxtecan
2023
PTEN Loss Confers Resistance to Anti-PD-1 Therapy in Non-Small Cell Lung Cancer by Increasing Tumor Infiltration of Regulatory T Cells.
Exposito F, Redrado M, Houry M, Hastings K, Molero-Abraham M, Lozano T, Solorzano J, Sanz-Ortega J, Adradas V, Amat R, Redin E, Leon S, Legarra N, Garcia J, Serrano D, Valencia K, Robles-Oteiza C, Foggetti G, Otegui N, Felip E, Lasarte J, Paz-Ares L, Zugazagoitia J, Politi K, Montuenga L, Calvo A. PTEN Loss Confers Resistance to Anti-PD-1 Therapy in Non-Small Cell Lung Cancer by Increasing Tumor Infiltration of Regulatory T Cells. Cancer Research 2023, 83: 2513-2526. PMID: 37311042, DOI: 10.1158/0008-5472.can-22-3023.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerLung squamous carcinomaAnti-PD-1 therapyRegulatory T cellsCell lung cancerImmunosuppressive microenvironmentLung cancerImmunotherapy resistanceT cellsWorse progression-free survivalCell death protein 1PTEN lossAnti-TGFβ antibodyConversion of CD4PI3K/AKT/mTOR pathwayProgression-free survivalDeath protein 1Treatment of miceImmunosuppressive tumor microenvironmentPTEN/PI3K/AKT/mTOR pathwayAKT/mTOR pathwayPD-L1TLR agonistsTumor rejectionSquamous carcinomaEfficacy of Osimertinib in Patients with Lung Cancer Positive for Uncommon EGFR Exon 19 Deletion Mutations
Grant M, Aredo J, Starrett J, Stockhammer P, van Rosenburgh I, Wurtz A, Piper-Valillo A, Piotrowska Z, Falcon C, Yu H, Aggarwal C, Scholes D, Patil T, Nguyen C, Phadke M, Li F, Neal J, Lemmon M, Walther Z, Politi K, Goldberg S. Efficacy of Osimertinib in Patients with Lung Cancer Positive for Uncommon EGFR Exon 19 Deletion Mutations. Clinical Cancer Research 2023, 29: of1-of8. PMID: 36913537, PMCID: PMC10493186, DOI: 10.1158/1078-0432.ccr-22-3497.Peer-Reviewed Original ResearchConceptsProgression-free survivalNon-small cell lung cancerInferior progression-free survivalMulticenter retrospective cohortEfficacy of osimertinibMulti-institutional cohortCell lung cancerExon 19 deletion mutationUncommon EGFRRetrospective cohortClinical outcomesClinical efficacyLung cancerOsimertinib efficacyEGFR mutationsPreclinical modelsEx19delPatientsAACR Genie databaseLater linesOsimertinibMutant cohortFirst lineCohortEfficacy
2022
Brain metastatic outgrowth and osimertinib resistance are potentiated by RhoA in EGFR-mutant lung cancer
Adua S, Arnal-Estapé A, Zhao M, Qi B, Liu Z, Kravitz C, Hulme H, Strittmatter N, López-Giráldez F, Chande S, Albert A, Melnick M, Hu B, Politi K, Chiang V, Colclough N, Goodwin R, Cross D, Smith P, Nguyen D. Brain metastatic outgrowth and osimertinib resistance are potentiated by RhoA in EGFR-mutant lung cancer. Nature Communications 2022, 13: 7690. PMID: 36509758, PMCID: PMC9744876, DOI: 10.1038/s41467-022-34889-z.Peer-Reviewed Original ResearchConceptsGene expression programsRas homolog family member ACancer cellsFamily member AEpidermal growth factor receptorExpression programsMetastatic cancer cellsSRF signalingGrowth factor receptorTumor microenvironmentLung cancerFunctional linkExtracellular lamininDrug-resistant cancer cellsMutant non-small cell lung cancerNon-small cell lung cancerCentral nervous system relapseMolecular studiesMember AEGFR-mutant lung cancerFactor receptorNervous system relapseCell lung cancerDisseminated tumor cellsBrain tumor microenvironment
2021
Immune Therapy: What Can We Learn From Acquired Resistance?
Grant M, Politi K, Gettinger S. Immune Therapy: What Can We Learn From Acquired Resistance? Current Cancer Research 2021, 75-114. DOI: 10.1007/978-3-030-74028-3_5.ChaptersNon-small cell lung cancerAdvanced non-small cell lung cancerDeath-1 pathway inhibitorsPD-1 axis inhibitorsInitial tumor regressionCell lung cancerImmune checkpoint pathwaysIFN-γ signalingMediators of resistanceDisease stabilitySystemic progressionMost patientsLocal therapyClinical criteriaLung cancerTumor regressionTumor typesDisease sitesPathway inhibitorAcquired ResistancePresentation defectPatientsTranslational workProgressionEpigenetic changes
2017
Circulating tumor DNA (ctDNA) to monitor treatment response and progression in patients treated with tyrosine kinase inhibitors (TKIs) and immunotherapy for EGFR-mutant non-small cell lung cancer (NSCLC).
Henick B, Goldberg S, Narayan A, Rossi C, Rodney S, Kole A, Politi K, Gettinger S, Herbst R, Patel A. Circulating tumor DNA (ctDNA) to monitor treatment response and progression in patients treated with tyrosine kinase inhibitors (TKIs) and immunotherapy for EGFR-mutant non-small cell lung cancer (NSCLC). Journal Of Clinical Oncology 2017, 35: e20652-e20652. DOI: 10.1200/jco.2017.35.15_suppl.e20652.Peer-Reviewed Original ResearchNon-small cell lung cancerTyrosine kinase inhibitorsEGFR-mutant non-small cell lung cancerCtDNA levelsDisease progressionRadiographic progressionTKI therapyEGFR mutationsEGFR mutation-positive non-small cell lung cancerMutation-positive non-small cell lung cancerT790MAnti-PD-1 monotherapyEGFR mutation-positive patientsPD-1 inhibitor monotherapyEGFR-mutant NSCLC patientsSubset of patientsCell lung cancerMutation-positive patientsAssessment of responseLow ctDNA levelsChart reviewClinical characteristicsDurable responsesInhibitor monotherapyNSCLC patients