2024
mRNA Vaccines Against Tick‐borne Diseases
Arora G, Fikrig E. mRNA Vaccines Against Tick‐borne Diseases. 2024, 285-301. DOI: 10.1002/9783527838394.ch10.Peer-Reviewed Original ResearchTick-borne diseasesMRNA vaccinesIxodes scapularis ticksCrimean-Congo hemorrhagic feverEffective memory responsesVector-borne diseasesIncreasing cost of developmentPowassan virusModified mRNA vaccineMRNA-based vaccinesTicksVaccine platformTurnover timeLipid nanoparticlesMemory responsesClinical trialsImmune systemEffective vaccineMultiple antigensPathogensSpreading virusArthropodsVaccineDiseaseHemorrhagic fever
2023
Frankenbacteriosis targeting interactions between pathogen and symbiont to control infection in the tick vector
Mazuecos L, Alberdi P, Hernández-Jarguín A, Contreras M, Villar M, Cabezas-Cruz A, Simo L, González-García A, Díaz-Sánchez S, Neelakanta G, Bonnet S, Fikrig E, de la Fuente J. Frankenbacteriosis targeting interactions between pathogen and symbiont to control infection in the tick vector. IScience 2023, 26: 106697. PMID: 37168564, PMCID: PMC10165458, DOI: 10.1016/j.isci.2023.106697.Peer-Reviewed Original ResearchHuman granulocytic anaplasmosisPathogen infection/transmissionTick-borne pathogensTick-borne diseasesInfection/transmissionTick vectorGranulocytic anaplasmosisWildtype populationTick microbiotaPathogensModel pathogenTransovarialAnaplasmosisMSP4TicksAssociated reductionCompetitionLarvaeDisease riskParatransgenesisSymbiontsInfectionCommensal bacteriaBacteriaControl
2021
Tick immunity using mRNA, DNA and protein-based Salp14 delivery strategies
Matias J, Kurokawa C, Sajid A, Narasimhan S, Arora G, Diktas H, Lynn GE, DePonte K, Pardi N, Valenzuela JG, Weissman D, Fikrig E. Tick immunity using mRNA, DNA and protein-based Salp14 delivery strategies. Vaccine 2021, 39: 7661-7668. PMID: 34862075, PMCID: PMC8671329, DOI: 10.1016/j.vaccine.2021.11.003.Peer-Reviewed Original ResearchConceptsTick bite siteTick immunityAntigen deliveryBite siteGuinea pigsDevelopment of vaccinesIxodes scapularis ticksProtein immunizationAntibody responseTick biteVaccine platformLipid nanoparticlesMRNA lipid nanoparticlesMRNA-LNPModel antigenTick salivaEarly hallmarkImmunityTick-borne diseasesScapularis ticksTick challengeErythemaSalivary componentsFactor XaDelivery strategiesPotential impacts of climate change on medically important tick species in North America.
Lynn G, Narasimhan S, Fikrig E. Potential impacts of climate change on medically important tick species in North America. 2021, 145-151. DOI: 10.1079/9781789249637.0021.Chapters
2020
Ixodes scapularis saliva components that elicit responses associated with acquired tick-resistance
Narasimhan S, Kurokawa C, Diktas H, Strank NO, Černý J, Murfin K, Cao Y, Lynn G, Trentleman J, Wu MJ, DePonte K, Kantor F, Anguita J, Hovius J, Fikrig E. Ixodes scapularis saliva components that elicit responses associated with acquired tick-resistance. Ticks And Tick-borne Diseases 2020, 11: 101369. PMID: 31924502, PMCID: PMC7382422, DOI: 10.1016/j.ttbdis.2019.101369.Peer-Reviewed Original ResearchConceptsTick-borne diseasesSalivary antigensAnti-tick vaccine candidatesIxodes scapularisTick salivary antigensTransmission of pathogensTick infestationTick rejectionTick proteinsViable vaccine targetsTick feedingPathogen transmissionRise worldTicksHost immune responseUrgent public health needScapularisMammalian hostsPathogensPublic health needsVaccine candidatesImmune responseSalivary glycoproteinsFeedingVaccine targeting
2019
Polymicrobial Nature of Tick-Borne Diseases
Sanchez-Vicente S, Tagliafierro T, Coleman J, Benach J, Tokarz R, Azad A, Fikrig E, Munderloh U, Telford S. Polymicrobial Nature of Tick-Borne Diseases. MBio 2019, 10: e02055-19. PMID: 31506314, PMCID: PMC6737246, DOI: 10.1128/mbio.02055-19.Peer-Reviewed Original ResearchConceptsPolymicrobial infectionsClinical spectrumTick-borne diseasesFatal infectionPowassan virusDisproportionate incidenceTick-borne diseaseDifficult diagnosisNew pathogensNew agentsPolymicrobial natureDisease severityInfectionDiseaseLyme diseasePrevalent pathogenBorreliaHigh rateIncidenceDiagnosisSeverityRickettsiaTick vectorVirusClimate change
2015
Tick microbiome: the force within
Narasimhan S, Fikrig E. Tick microbiome: the force within. Trends In Parasitology 2015, 31: 315-323. PMID: 25936226, PMCID: PMC4492851, DOI: 10.1016/j.pt.2015.03.010.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2010
Anaplasma phagocytophilum AptA modulates Erk1/2 signalling
Sukumaran B, Mastronunzio JE, Narasimhan S, Fankhauser S, Uchil PD, Levy R, Graham M, Colpitts TM, Lesser CF, Fikrig E. Anaplasma phagocytophilum AptA modulates Erk1/2 signalling. Cellular Microbiology 2010, 13: 47-61. PMID: 20716207, PMCID: PMC3005019, DOI: 10.1111/j.1462-5822.2010.01516.x.Peer-Reviewed Original ResearchConceptsA. phagocytophilum infectionPhagocytophilum infectionCommon tick-borne diseasesHuman granulocytic anaplasmosisActivation of ERK1/2ERK1/2 mitogen-activated protein kinasesA. phagocytophilum survivalPolymorphonuclear leucocytesMitogen-activated protein kinaseHuman neutrophilsObligate intracellular pathogensGranulocytic anaplasmosisIntracellular pathogensTick-borne diseasesInfectionERK1/2 activationAnaplasma phagocytophilumVimentinSurvivalActivationBacterial inclusionsHost proteinsIntermediate filament protein vimentinVirulence proteinsProtein vimentin