2024
A Molecular-Based Ecosystem to Improve Personalized Medicine in Patients with Chronic Myelomonocytic Leukemia (CMML)
Lanino L, Hunter A, Gagelmann N, Robin M, Sala C, Dall'Olio D, Gurnari C, Dall'Olio L, Wang Y, Pleyer L, Xicoy B, Montalban-Bravo G, Shih L, Haque T, Abdel-Wahab O, Geissler K, Bataller A, Bazinet A, Meggendorfer M, Casetti I, Sauta E, Travaglino E, Palomo L, Zamora L, Quintela D, Jerez A, Cornejo E, Garcia Martin P, Díaz-Beyá M, Avendaño Pita A, Roldan V, Fiallo Suarez D, Cerezo Velasco E, Calabuig M, Such E, Sanz G, Kubasch A, Castilla-Llorente C, Bulabois C, Souchet L, Awada H, Bernardi M, Chiusolo P, Curti A, Giaccone L, Onida F, Borin L, Passamonti F, Diral E, Vucinic V, Bergonzi G, Voso M, Hou H, Chou W, Yao C, Lin C, Tien H, Campagna A, Ubezio M, Russo A, Todisco G, Maggioni G, Tentori C, Buizza A, Asti G, Zampini M, Riva E, Delleani M, Consagra A, Ficara F, Santoro A, Carota L, Sanavia T, Rollo C, Kiwan A, VanOudenhove J, Fariselli P, Al Ali N, Sallman D, Kern W, Garcia-Manero G, Thota S, Griffiths E, Follo M, Finelli C, Platzbecker U, Sole F, Diez-Campelo M, Maciejewski J, Bejar R, Thol F, Kröger N, Fenaux P, Itzykson R, Graubert T, Fontenay M, Zeidan A, Komrokji R, Santini V, Haferlach T, Germing U, D'Amico S, Castellani G, Patnaik M, Solary E, Padron E, Della Porta M. A Molecular-Based Ecosystem to Improve Personalized Medicine in Patients with Chronic Myelomonocytic Leukemia (CMML). Blood 2024, 144: 1003-1003. DOI: 10.1182/blood-2024-200104.Peer-Reviewed Original ResearchChronic myelomonocytic leukemiaLeukemia-free survivalMyeloid neoplasmsProportion of patientsOverall survivalMolecular-based toolsMolecular informationEvaluation of mutation statusInfluence disease phenotypeGenomic overlapScoring systemGenomic associationsGenomic featuresSplicing machineryConcordance indexGenomic characterizationChronic myelomonocytic leukemia patientsMedian leukemia-free survivalProbability of disease relapseAllogeneic stem cell transplantationSignal transductionGenomic heterogeneityRisk of disease progressionMulti-color flow cytometryMutation screeningClinical and Genomic-Based Decision Support System to Define the Optimal Timing of Allogeneic Hematopoietic Stem-Cell Transplantation in Patients With Myelodysplastic Syndromes
Tentori C, Gregorio C, Robin M, Gagelmann N, Gurnari C, Ball S, Caballero Berrocal J, Lanino L, D'Amico S, Spreafico M, Maggioni G, Travaglino E, Sauta E, Meggendorfer M, Zhao L, Campagna A, Savevski V, Santoro A, Al Ali N, Sallman D, Sole F, Garcia-Manero G, Germing U, Kroger N, Kordasti S, Santini V, Sanz G, Kern W, Platzbecker U, Diez-Campelo M, Maciejewski J, Ades L, Fenaux P, Haferlach T, Zeidan A, Castellani G, Komrokji R, Ieva F, Della Porta M, Bernardi M, Di Grazia C, Vago L, Rivoli G, Borin L, Chiusolo P, Giaccone L, Voso M, Bewersdorf J, Nibourel O, Beyá M, Jerez A, Hernández F, Kennedy K, Xicoy B, Ubezio M, Russo A, Todisco G, Mannina D, Bramanti S, Zampini M, Riva E, Bicchieri M, Asti G, Viviani F, Buizza A, Tinterri B, Kubasch A, Bacigalupo A, Raiola A, Rambaldi A, Passamonti F, Ciceri F. Clinical and Genomic-Based Decision Support System to Define the Optimal Timing of Allogeneic Hematopoietic Stem-Cell Transplantation in Patients With Myelodysplastic Syndromes. Journal Of Clinical Oncology 2024, 42: 2873-2886. PMID: 38723212, PMCID: PMC11328926, DOI: 10.1200/jco.23.02175.Peer-Reviewed Original ResearchHematopoietic stem-cell transplantationAllogeneic hematopoietic stem-cell transplantationStem-cell transplantationMyelodysplastic syndromeIPSS-MMolecular International Prognostic Scoring SystemInternational Prognostic Scoring SystemPrognostic Scoring SystemTime of transplantationProportion of patientsHigh-risk categoryOptimal timingProlonged life expectancyRevised IPSSIPSS-RRetrospective populationValidation cohortCurative treatmentClinical relevanceTransplantationPatientsModerately high-Scoring systemAverage survivalLife expectancy
2023
Reclassification of Ascertain (ASTX727-02) Myelodysplastic Syndrome (MDS) Patients: Outcomes Including Clinical Response, Overall Survival (OS), and Leukemia Free Survival (LFS) Based on IPSS-R and IPSS-M Scoring Systems
Garcia-Manero G, McCloskey J, Griffiths E, Zeidan A, Yee K, Al-Kali A, Deeg H, Patel P, Sabloff M, Keating M, Zhu N, Gabrail N, Fazal S, Maly J, Odenike O, Kantarjian H, DeZern A, O'Connell C, Roboz G, Busque L, Buckstein R, Amin H, Randhawa J, Leber B, Lee S, Chan W, Souza S, Sano Y, Keer H, Savona M. Reclassification of Ascertain (ASTX727-02) Myelodysplastic Syndrome (MDS) Patients: Outcomes Including Clinical Response, Overall Survival (OS), and Leukemia Free Survival (LFS) Based on IPSS-R and IPSS-M Scoring Systems. Blood 2023, 142: 4619. DOI: 10.1182/blood-2023-188258.Peer-Reviewed Original ResearchInternational Prognosis Scoring SystemLow-risk MDSHigh-risk MDSLeukemia-free survivalIPSS-R scoreOverall survivalMDS subjectsClinical outcomesPatient outcomesC-indexConcordance indexScoring systemMDS/CMMLMedian overall survivalDifferent risk stratification systemsHarrell's concordance indexMyelodysplastic syndrome patientsHigh-risk populationRisk stratification systemHigh-risk categoryHR categoriesCycle 2Different risk categoriesTreatment discontinuationClinical responseValidation of the Molecular International Prognostic Scoring System (IPSS-M) in Patients (Pts) with Myelodysplastic Syndromes/Neoplasms (MDS) Who Were Treated with Hypomethylating Agents (HMA)
Kewan T, Bewersdorf J, Blaha O, Stahl M, Al Ali N, DeZern A, Sekeres M, Carraway H, Desai P, Griffiths E, Stein E, Brunner A, Amaya M, Zeidner J, Savona M, Stempel J, Chandhok N, Logothetis C, Ramaswamy R, Rose A, Roboz G, Rolles B, Wang E, Harris A, Shallis R, Xie Z, Padron E, Maciejewski J, Sallman D, Della Porta M, Komrokji R, Zeidan A. Validation of the Molecular International Prognostic Scoring System (IPSS-M) in Patients (Pts) with Myelodysplastic Syndromes/Neoplasms (MDS) Who Were Treated with Hypomethylating Agents (HMA). Blood 2023, 142: 3240. DOI: 10.1182/blood-2023-186340.Peer-Reviewed Original ResearchComplete remission rateOverall response rateOutcome of ptsMedian overall survivalOverall survivalHypomethylating agentHMA initiationHR-MDSC-indexRisk groupsScoring systemInternational Prognostic Scoring SystemResponse criteriaPrognostic scoring systemHigh-risk diseaseLarge multicenter cohortHigh-risk groupHarrell's C-indexLog-rank testPrediction of outcomeDifferent scoring systemsSubsequent validation studiesHMA cyclesMedian followAllogeneic HSCTWhen to use which molecular prognostic scoring system in the management of patients with MDS?
Kewan T, Bewersdorf J, Gurnari C, Xie Z, Stahl M, Zeidan A. When to use which molecular prognostic scoring system in the management of patients with MDS? Best Practice & Research Clinical Haematology 2023, 36: 101517. PMID: 38092484, DOI: 10.1016/j.beha.2023.101517.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsInternational Prognostic Scoring SystemPrognostic scoring systemAcute myeloid leukemiaScoring systemRisk stratificationRecurrent molecular alterationsHigh-risk patientsAppropriate risk stratificationManagement of patientsRecurrent genetic mutationsIntensive therapyMyeloid leukemiaTreatment strategiesPrognostic toolDisease pathogenesisMolecular alterationsHematopoietic cancersClinical decisionHeterogeneous groupGenetic mutationsNext-generation sequencingPrognostic systemPatientsVariable propensitySubsequent revision
2022
Disease Characteristics and International Prognostic Scoring Systems (IPSS, IPSS-R, IPSS-M) in Adult Patients with Higher-Risk Myelodysplastic Syndromes (MDS) Participating in Two Randomized, Double-Blind, Placebo-Controlled Studies with Intravenous Sabatolimab Added to Hypomethylating Agents (HMA) (STIMULUS-MDS1 and MDS2)
Santini V, Platzbecker U, Fenaux P, Giagounidis A, Miyazaki Y, Sekeres M, Xiao Z, Sanz G, Van Hoef M, Ma F, Hertle S, Ramos P, Zeidan A. Disease Characteristics and International Prognostic Scoring Systems (IPSS, IPSS-R, IPSS-M) in Adult Patients with Higher-Risk Myelodysplastic Syndromes (MDS) Participating in Two Randomized, Double-Blind, Placebo-Controlled Studies with Intravenous Sabatolimab Added to Hypomethylating Agents (HMA) (STIMULUS-MDS1 and MDS2). Blood 2022, 140: 1340-1342. DOI: 10.1182/blood-2022-160282.Peer-Reviewed Original ResearchPrognostication in myelodysplastic syndromes (neoplasms): Molecular risk stratification finally coming of age
Xie Z, Chen E, Stahl M, Zeidan A. Prognostication in myelodysplastic syndromes (neoplasms): Molecular risk stratification finally coming of age. Blood Reviews 2022, 59: 101033. PMID: 36357283, DOI: 10.1016/j.blre.2022.101033.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsMyelodysplastic syndromePrognostic modelManagement of MDSInternational Prognostic Scoring SystemMolecular prognostic modelPrognostic scoring systemMolecular risk stratificationHeterogeneous clinical outcomesBone marrow failure disordersMarrow failure disordersRevised IPSSClinical outcomesRisk prognosticationRisk stratificationTraditional risk modelsScoring systemMDS pathobiology
2020
Prognostic Models in Myelodysplastic Syndromes
Bewersdorf J, Zeidan A. Prognostic Models in Myelodysplastic Syndromes. 2020, 109-127. DOI: 10.1007/978-3-030-51878-3_7.Peer-Reviewed Original ResearchInternational Prognostic Scoring SystemRisk stratification toolMyelodysplastic syndromeScoring systemStratification toolPrognostic scoring systemClinical trial enrollmentTrial enrollmentPrognostic relevanceDisease characteristicsPatient counselingBody of evidenceTreatment recommendationsPatient subpopulationsIndividual patientsTreatment selectionClinical scenariosPrognostic modelGenetic testingSomatic mutationsSyndromeScoresPatientsPrognostication
2017
Comparison of clinical outcomes and prognostic utility of risk stratification tools in patients with therapy-related vs de novo myelodysplastic syndromes: a report on behalf of the MDS Clinical Research Consortium
Zeidan AM, Al Ali N, Barnard J, Padron E, Lancet JE, Sekeres MA, Steensma DP, DeZern A, Roboz G, Jabbour E, Garcia-Manero G, List A, Komrokji R. Comparison of clinical outcomes and prognostic utility of risk stratification tools in patients with therapy-related vs de novo myelodysplastic syndromes: a report on behalf of the MDS Clinical Research Consortium. Leukemia 2017, 31: 1391-1397. PMID: 28111463, DOI: 10.1038/leu.2017.33.Peer-Reviewed Original ResearchConceptsInternational Prognostic Scoring SystemT-MDS patientsDe novo myelodysplastic syndromePrognostic scoring systemNovo myelodysplastic syndromeMyelodysplastic syndromeT-MDSClinical outcomesScoring systemMDS Clinical Research ConsortiumClinical Research ConsortiumRisk stratification toolRisk group categoriesRisk stratification modelConventional risk stratification modelPrognostic systemPrior therapyMedian survivalIndolent courseInferior survivalMDS patientsPrognostic utilityStratification toolWorse outcomesPatients
2015
Comparing the prognostic value of risk stratifying models for patients with lower‐risk myelodysplastic syndromes: Is one model better?
Zeidan AM, Sekeres MA, Wang X, Al Ali N, Garcia‐Manero G, Steensma DP, Roboz G, Barnard J, Padron E, DeZern A, Maciejewski JP, List AF, Komrokji RS, Consortium O. Comparing the prognostic value of risk stratifying models for patients with lower‐risk myelodysplastic syndromes: Is one model better? American Journal Of Hematology 2015, 90: 1036-1040. PMID: 26284571, DOI: 10.1002/ajh.24173.Peer-Reviewed Original ResearchConceptsInternational Prognostic Scoring SystemIPSS-R categoryLR-MDSHarrell's C-indexOverall survivalC-indexLower-risk myelodysplastic syndromesRevised International Prognostic Scoring SystemActual overall survivalMedian overall survivalVaried survival outcomesKaplan-Meier methodPrognostic scoring systemDisease-modifying therapiesCategory 3Eligible patientsPoor OSPrognostic utilitySurvival outcomesMyelodysplastic syndromePrognostic valueLarge cohortPatientsEarly interventionScoring systemComparison of risk stratification tools in predicting outcomes of patients with higher-risk myelodysplastic syndromes treated with azanucleosides
Zeidan AM, Sekeres MA, Garcia-Manero G, Steensma DP, Zell K, Barnard J, Ali NA, Zimmerman C, Roboz G, DeZern A, Nazha A, Jabbour E, Kantarjian H, Gore SD, Maciejewski JP, List A, Komrokji R. Comparison of risk stratification tools in predicting outcomes of patients with higher-risk myelodysplastic syndromes treated with azanucleosides. Leukemia 2015, 30: 649-657. PMID: 26464171, PMCID: PMC4775363, DOI: 10.1038/leu.2015.283.Peer-Reviewed Original ResearchConceptsInternational Prognostic Scoring SystemPrognostic scoring systemMD Anderson Prognostic Scoring SystemMyelodysplastic syndromePrognostic toolScoring systemDifferent prognostic scoring systemsHigh-risk myelodysplastic syndromeRelative prognostic performanceOutcomes of patientsFirst-line therapyRisk stratification toolHigh-risk groupWorld Health OrganizationHR-MDSMedian OSObjective responseOverall survivalStandard therapyPrognostic utilityStratification toolPatient cohortPrognostic performancePatientsHealth OrganizationComparing the Prognostic Value of Risk stratifying Models for Patients with Lower‐Risk Myelodysplastic Syndromes: Is one model better?
Zeidan A, Sekeres M, Wang X, Al Ali N, Garcia‐Manero G, Steensma D, Roboz G, Barnard J, Padron E, Dezern A, Maciejewski J, List A, Komrokji R. Comparing the Prognostic Value of Risk stratifying Models for Patients with Lower‐Risk Myelodysplastic Syndromes: Is one model better? American Journal Of Hematology 2015 PMCID: PMC4751065, DOI: 10.1002/ajh.24170.Peer-Reviewed Original ResearchInternational Prognostic Scoring SystemIPSS-R categoryLR-MDSHarrell's C-indexOverall survivalC-indexLower-risk myelodysplastic syndromesRevised International Prognostic Scoring SystemActual overall survivalMedian overall survivalVaried survival outcomesKaplan-Meier methodPrognostic scoring systemDisease-modifying therapiesCategory 3Eligible patientsPoor OSPrognostic utilitySurvival outcomesMyelodysplastic syndromePrognostic valueLarge cohortPatientsEarly interventionScoring system
2014
The Prognostic Utility of the Current Risk Models in Predicting Outcomes of Patients (pts) with Higher-Risk Myelodysplastic Syndromes (HR-MDS) Treated with Hypomethylating Agents (HMA)
Zeidan A, Sekeres M, Garcia-Manero G, Barnard J, Al Ali N, Zimmerman C, Roboz G, Steensma D, DeZern A, Jabbour E, Kantarjian H, Zell K, Wang Q, Gore S, Nazha A, Maciejewski J, List A, Komrokji R. The Prognostic Utility of the Current Risk Models in Predicting Outcomes of Patients (pts) with Higher-Risk Myelodysplastic Syndromes (HR-MDS) Treated with Hypomethylating Agents (HMA). Blood 2014, 124: 1935. DOI: 10.1182/blood.v124.21.1935.1935.Peer-Reviewed Original ResearchMD Anderson Prognostic Scoring SystemHigh-risk myelodysplastic syndromeInternational Prognostic Scoring SystemMedian overall survivalHematopoietic cell transplantationPrognostic scoring systemOverall response rateOverall survivalHMA therapyHypomethylating agentComplete responseScoring systemStable diseaseHematologic improvementPartial responseProgressive diseaseConfidence intervalsInternational Working Group 2006 criteriaMDS Clinical Research ConsortiumPrognostic modelRevised International Prognostic Scoring SystemRisk categoriesBoehringer Ingelheim CorpCycles of therapyMarrow complete responsePlatelet count doubling after the first cycle of azacitidine therapy predicts eventual response and survival in patients with myelodysplastic syndromes and oligoblastic acute myeloid leukaemia but does not add to prognostic utility of the revised IPSS
Zeidan AM, Lee J, Prebet T, Greenberg P, Sun Z, Juckett M, Smith MR, Paietta E, Gabrilove J, Erba HP, Katterling RP, Tallman MS, Gore SD. Platelet count doubling after the first cycle of azacitidine therapy predicts eventual response and survival in patients with myelodysplastic syndromes and oligoblastic acute myeloid leukaemia but does not add to prognostic utility of the revised IPSS. British Journal Of Haematology 2014, 167: 62-68. PMID: 24995683, PMCID: PMC4299466, DOI: 10.1111/bjh.13008.Peer-Reviewed Original ResearchConceptsOligoblastic acute myeloid leukemiaAzacitidine therapyPrognostic scoring systemAcute myeloid leukemiaMyelodysplastic syndromePlatelet countMyeloid leukemiaScoring systemInternational Prognostic Scoring SystemProspective clinical trialsRisk of deathNorth American patientsUnmet medical needRevised IPSSObjective responsePrognostic utilityClinical benefitAmerican patientsClinical trialsDutch cohortLarge cohortSurvival advantageMolecular predictorsPatientsTop research priorities
2013
The Utility Of Newer Risk Models In Predicting Outcomes Of Patients (pts) With Higher-Risk (HR) Myelodysplastic Syndromes (MDS) Treated With Azactidine (aza)
Zeidan A, Al Ali N, Kharfan-Dabaja M, Padron E, Zhang L, Epling-Burnette P, Lancet J, List A, Komrokji R. The Utility Of Newer Risk Models In Predicting Outcomes Of Patients (pts) With Higher-Risk (HR) Myelodysplastic Syndromes (MDS) Treated With Azactidine (aza). Blood 2013, 122: 2771. DOI: 10.1182/blood.v122.21.2771.2771.Peer-Reviewed Original ResearchMD Anderson Prognostic Scoring SystemMedian overall survivalHigh-risk groupMoffitt Cancer CenterAZA therapyHR-MDSOverall survivalPrognostic scoring systemMyelodysplastic syndromeIntermediate riskRisk groupsLower riskScoring systemPrognostic groupsInt-2Therapy-related myelodysplastic syndromeHigh-risk myelodysplastic syndromeCycles of therapyHR-MDS patientsKaplan-Meier curvesLog-rank testOff-label useAZA initiationRevised IPSSR-IPSS