Featured Publications
UBE2J1 is the E2 ubiquitin-conjugating enzyme regulating androgen receptor degradation and antiandrogen resistance
Rodriguez Tirado C, Wang C, Li X, Deng S, Gonzalez J, Johnson N, Xu Y, Metang L, Sundar Rajan M, Yang Y, Yin Y, Hofstad M, Raj G, Zhang S, Lemoff A, He W, Fan J, Wang Y, Wang T, Mu P. UBE2J1 is the E2 ubiquitin-conjugating enzyme regulating androgen receptor degradation and antiandrogen resistance. Oncogene 2023, 43: 265-280. PMID: 38030789, PMCID: PMC10798893, DOI: 10.1038/s41388-023-02890-5.Peer-Reviewed Original ResearchMeSH KeywordsAndrogen AntagonistsAndrogensCell Line, TumorHumansMaleProstatic NeoplasmsProstatic Neoplasms, Castration-ResistantProteolysisReceptors, AndrogenUbiquitin-Conjugating EnzymesConceptsAberrant androgen receptorProstate cancerAR ubiquitinationAR degradationAntiandrogen therapyResistance to antiandrogen therapyE2 ubiquitin-conjugating enzymeEnhanced AR signalingAndrogen receptor degradersAR protein levelsProstate cancer patientsUbiquitin-conjugating enzymeResistant tumorsPCa tumorsAR signalingAndrogen receptorAntiandrogen treatmentAntiandrogen resistanceAR proteinReceptor degradationProtein levelsOncogenic proteinsTumorTherapyProtein degradation processLoss of CHD1 Promotes Heterogeneous Mechanisms of Resistance to AR-Targeted Therapy via Chromatin Dysregulation
Zhang Z, Zhou C, Li X, Barnes S, Deng S, Hoover E, Chen C, Lee Y, Zhang Y, Wang C, Metang L, Wu C, Tirado C, Johnson N, Wongvipat J, Navrazhina K, Cao Z, Choi D, Huang C, Linton E, Chen X, Liang Y, Mason C, de Stanchina E, Abida W, Lujambio A, Li S, Lowe S, Mendell J, Malladi V, Sawyers C, Mu P. Loss of CHD1 Promotes Heterogeneous Mechanisms of Resistance to AR-Targeted Therapy via Chromatin Dysregulation. Cancer Cell 2020, 37: 584-598.e11. PMID: 32220301, PMCID: PMC7292228, DOI: 10.1016/j.ccell.2020.03.001.Peer-Reviewed Original ResearchMeSH KeywordsAndrogen AntagonistsAnimalsApoptosisBiomarkers, TumorCell ProliferationChromatinDNA HelicasesDNA-Binding ProteinsDrug Resistance, NeoplasmGene Expression Regulation, NeoplasticHigh-Throughput Screening AssaysHumansMaleMiceProstatic Neoplasms, Castration-ResistantReceptors, AndrogenRNA, Small InterferingTranscription FactorsTumor Cells, CulturedXenograft Model Antitumor AssaysConceptsAntiandrogen resistanceChromatin dysregulationCHD1 lossProstate cancerGenomic copy number alterationsRNA-seq analysisResistance to hormonal therapyCopy number alterationsAR-targeted therapiesMetastatic prostate cancerATAC-seqClosed chromatinRNA-seqTranscriptional plasticityTranscription factorsFunctional screeningTranscriptomic changesMechanisms of resistanceHormone therapyLineage programsChromatinCHD1Global changeIntegrated analysisTherapy
2023
The Critical Interplay of CAF Plasticity and Resistance in Prostate Cancer.
Li X, Mu P. The Critical Interplay of CAF Plasticity and Resistance in Prostate Cancer. Cancer Research 2023, 83: 2990-2992. PMID: 37504898, DOI: 10.1158/0008-5472.can-23-2260.Commentaries, Editorials and LettersMeSH KeywordsAndrogen AntagonistsAnimalsDisease ProgressionDrug Resistance, NeoplasmHumansMaleMiceNeoplasm Recurrence, LocalProstatic Neoplasms, Castration-ResistantReceptors, AndrogenTumor MicroenvironmentConceptsCastration-resistant prostate cancerAndrogen deprivation therapyProstate cancerAndrogen receptorCastration-resistant prostate cancer developmentDevelopment of castration-resistant prostate cancerGenetically engineered mouse modelsMyofibroblastic cancer-associated fibroblastsOvercome treatment resistanceCancer-associated fibroblastsIncreased tumor heterogeneityDeprivation therapyCRPC developmentProstate tumorsTumor microenvironmentLineage plasticityTreatment resistanceStromal compartmentStandard treatmentTumor heterogeneityCancer recurrenceDrug resistanceDisease progressionMouse modelSingle-cell RNA sequencing
2022
The driver role of JAK‐STAT signalling in cancer stemness capabilities leading to new therapeutic strategies for therapy‐ and castration‐resistant prostate cancer
Lo U, Chen Y, Cen J, Deng S, Luo J, Zhau H, Ho L, Lai C, Mu P, Chung L, Hsieh J. The driver role of JAK‐STAT signalling in cancer stemness capabilities leading to new therapeutic strategies for therapy‐ and castration‐resistant prostate cancer. Clinical And Translational Medicine 2022, 12: e978. PMID: 35908276, PMCID: PMC9339240, DOI: 10.1002/ctm2.978.Peer-Reviewed Original ResearchMeSH KeywordsHumansInterferonsJanus KinasesMaleMicroRNAsProstatic Neoplasms, Castration-ResistantSignal TransductionSTAT Transcription FactorsConceptsCastration-resistant prostate cancerProstate cancerCancer stem cellsActivation of JAKJAK-STAT signalingGene set enrichment analysisJAK-STAT1 pathwaySTAT1 inhibitorAcquisition of stemness propertiesProstate cancer cell linesProstate cancer stemnessAssociated with cancer stem cellsIn vivo anti-tumor activityMetastatic prostate cancerTumor-initiating capabilityJAK-STATProstasphere assayDownstream effectorsIngenuity PathwayGenetic manipulationCSC genesBioinformatics analysisEnrichment analysisJAK-STAT1Signaling pathwaySOX2 mediates metabolic reprogramming of prostate cancer cells
de Wet L, Williams A, Gillard M, Kregel S, Lamperis S, Gutgesell L, Vellky J, Brown R, Conger K, Paner G, Wang H, Platz E, De Marzo A, Mu P, Coloff J, Szmulewitz R, Vander Griend D. SOX2 mediates metabolic reprogramming of prostate cancer cells. Oncogene 2022, 41: 1190-1202. PMID: 35067686, PMCID: PMC8858874, DOI: 10.1038/s41388-021-02157-x.Peer-Reviewed Original ResearchMeSH KeywordsCell Line, TumorCellular ReprogrammingGene Expression Regulation, NeoplasticGlycolysisHumansMaleMitochondriaProstatic NeoplasmsProstatic Neoplasms, Castration-ResistantSOXB1 Transcription FactorsConceptsProstate cancer cellsSOX2 expressionCancer cellsTherapy resistanceMetastatic progressionMetabolic reprogrammingAssociated with multiple oncogenic pathwaysAndrogen-sensitive prostate cancer cellsGene targetingCastration-resistant prostate cancer cellsIncreased spare respiratory capacityChIP-seq analysisRNA-seq datasetsStem cell transcription factor Sox2Prostate cancer cell linesAnnotated tumor specimensSOX2 binding sitesPentose phosphate pathwayCRISPR-mediated deletionDecreased patient survivalSpare respiratory capacityQuantity of mitochondriaDeletion of Sox2Case-control cohortGene expression analysis
2019
The paracrine induction of prostate cancer progression by caveolin-1
Lin C, Yun E, Lo U, Tai Y, Deng S, Hernandez E, Dang A, Chen Y, Saha D, Mu P, Lin H, Li T, Shen T, Lai C, Hsieh J. The paracrine induction of prostate cancer progression by caveolin-1. Cell Death & Disease 2019, 10: 834. PMID: 31685812, PMCID: PMC6828728, DOI: 10.1038/s41419-019-2066-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCaveolin 1Cell Line, TumorExosomesHumansMaleMiceMice, SCIDNeoplasm ProteinsParacrine CommunicationProstatic Neoplasms, Castration-ResistantSignal TransductionConceptsCastration-resistant prostate cancerCancer stem cellsTumor-derived exosomesProstate cancerCav-1Cancer progressionSubpopulation of cancer stem cellsAssociated with stem cell phenotypeCancer immune evasionProstate cancer progressionStem cell capabilitiesStem cell phenotypePromote cancer developmentPresence of Cav-1Heterogeneous cancer cell populationsCancer cell populationsNeuroendocrine differentiationNeuroendocrine transdifferentiationEpithelial-mesenchymal transitionNFkB signaling pathwayTherapeutic resistanceTumor cellsImmune evasionChemotherapeutic resistanceParacrine induction