Featured Publications
Loss of CHD1 Promotes Heterogeneous Mechanisms of Resistance to AR-Targeted Therapy via Chromatin Dysregulation
Zhang Z, Zhou C, Li X, Barnes S, Deng S, Hoover E, Chen C, Lee Y, Zhang Y, Wang C, Metang L, Wu C, Tirado C, Johnson N, Wongvipat J, Navrazhina K, Cao Z, Choi D, Huang C, Linton E, Chen X, Liang Y, Mason C, de Stanchina E, Abida W, Lujambio A, Li S, Lowe S, Mendell J, Malladi V, Sawyers C, Mu P. Loss of CHD1 Promotes Heterogeneous Mechanisms of Resistance to AR-Targeted Therapy via Chromatin Dysregulation. Cancer Cell 2020, 37: 584-598.e11. PMID: 32220301, PMCID: PMC7292228, DOI: 10.1016/j.ccell.2020.03.001.Peer-Reviewed Original ResearchMeSH KeywordsAndrogen AntagonistsAnimalsApoptosisBiomarkers, TumorCell ProliferationChromatinDNA HelicasesDNA-Binding ProteinsDrug Resistance, NeoplasmGene Expression Regulation, NeoplasticHigh-Throughput Screening AssaysHumansMaleMiceProstatic Neoplasms, Castration-ResistantReceptors, AndrogenRNA, Small InterferingTranscription FactorsTumor Cells, CulturedXenograft Model Antitumor AssaysConceptsAntiandrogen resistanceChromatin dysregulationCHD1 lossProstate cancerGenomic copy number alterationsRNA-seq analysisResistance to hormonal therapyCopy number alterationsAR-targeted therapiesMetastatic prostate cancerATAC-seqClosed chromatinRNA-seqTranscriptional plasticityTranscription factorsFunctional screeningTranscriptomic changesMechanisms of resistanceHormone therapyLineage programsChromatinCHD1Global changeIntegrated analysisTherapy
2022
SOX2 mediates metabolic reprogramming of prostate cancer cells
de Wet L, Williams A, Gillard M, Kregel S, Lamperis S, Gutgesell L, Vellky J, Brown R, Conger K, Paner G, Wang H, Platz E, De Marzo A, Mu P, Coloff J, Szmulewitz R, Vander Griend D. SOX2 mediates metabolic reprogramming of prostate cancer cells. Oncogene 2022, 41: 1190-1202. PMID: 35067686, PMCID: PMC8858874, DOI: 10.1038/s41388-021-02157-x.Peer-Reviewed Original ResearchMeSH KeywordsCell Line, TumorCellular ReprogrammingGene Expression Regulation, NeoplasticGlycolysisHumansMaleMitochondriaProstatic NeoplasmsProstatic Neoplasms, Castration-ResistantSOXB1 Transcription FactorsConceptsProstate cancer cellsSOX2 expressionCancer cellsTherapy resistanceMetastatic progressionMetabolic reprogrammingAssociated with multiple oncogenic pathwaysAndrogen-sensitive prostate cancer cellsGene targetingCastration-resistant prostate cancer cellsIncreased spare respiratory capacityChIP-seq analysisRNA-seq datasetsStem cell transcription factor Sox2Prostate cancer cell linesAnnotated tumor specimensSOX2 binding sitesPentose phosphate pathwayCRISPR-mediated deletionDecreased patient survivalSpare respiratory capacityQuantity of mitochondriaDeletion of Sox2Case-control cohortGene expression analysis
2020
Tumor Microenvironment-Derived NRG1 Promotes Antiandrogen Resistance in Prostate Cancer
Zhang Z, Karthaus W, Lee Y, Gao V, Wu C, Russo J, Liu M, Mota J, Abida W, Linton E, Lee E, Barnes S, Chen H, Mao N, Wongvipat J, Choi D, Chen X, Zhao H, Manova-Todorova K, de Stanchina E, Taplin M, Balk S, Rathkopf D, Gopalan A, Carver B, Mu P, Jiang X, Watson P, Sawyers C. Tumor Microenvironment-Derived NRG1 Promotes Antiandrogen Resistance in Prostate Cancer. Cancer Cell 2020, 38: 279-296.e9. PMID: 32679108, PMCID: PMC7472556, DOI: 10.1016/j.ccell.2020.06.005.Peer-Reviewed Original ResearchMeSH KeywordsAndrogen AntagonistsAnimalsCancer-Associated FibroblastsCell Line, TumorCell ProliferationCells, CulturedDrug Resistance, NeoplasmGene Expression ProfilingGene Expression Regulation, NeoplasticHumansKaplan-Meier EstimateMaleMice, SCIDNeuregulin-1Prostatic NeoplasmsTumor MicroenvironmentXenograft Model Antitumor AssaysConceptsCancer-associated fibroblastsProstate cancerAntiandrogen resistanceNeuregulin-1Second-generation antiandrogen therapyResistance to hormonal therapyCastration-resistant prostate cancerTreat advanced prostate cancerProstate organoid culturesSecond-generation antiandrogensAdvanced prostate cancerActivation of HER3Antiandrogen therapyHormone therapyHormone deprivationPharmacological blockadeTargeted therapyParacrine mechanismsTumor cellsMouse modelProstateClinical testingOrganoid culturesTherapyCancer
2012
Intact p53-Dependent Responses in miR-34–Deficient Mice
Concepcion C, Han Y, Mu P, Bonetti C, Yao E, D'Andrea A, Vidigal J, Maughan W, Ogrodowski P, Ventura A. Intact p53-Dependent Responses in miR-34–Deficient Mice. PLOS Genetics 2012, 8: e1002797. PMID: 22844244, PMCID: PMC3406012, DOI: 10.1371/journal.pgen.1002797.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCell Cycle CheckpointsCell ProliferationCell Transformation, NeoplasticCells, CulturedFibroblastsGene Expression Regulation, NeoplasticHumansMiceMice, KnockoutMicroRNAsTumor Suppressor Protein p53ConceptsMiR-34 familyMiR-34 expressionP53 pathwayP53-induced cell cycle arrestP53-independent functionsP53-dependent responseCell cycle arrestMiR-34Potential tumor suppressorExpression of membersP53-deficient miceP53-independentFamily of miRNAsP53 functionCycle arrestTumor suppressorMicroRNA familyCellular proliferation in vitroHuman cancersProliferation in vitroP53Brains of miceMicroRNAsNormal developmentMice