2023
Exploring therapeutic strategies for infantile neuronal axonal dystrophy (INAD/PARK14)
Lin G, Tepe B, McGrane G, Tipon R, Croft G, Panwala L, Hope A, Liang A, Zuo Z, Byeon S, Wang L, Pandey A, Bellen H. Exploring therapeutic strategies for infantile neuronal axonal dystrophy (INAD/PARK14). ELife 2023, 12: e82555. PMID: 36645408, PMCID: PMC9889087, DOI: 10.7554/elife.82555.Peer-Reviewed Original ResearchConceptsPatient-derived neural progenitor cellsNeural progenitor cellsPatient-derived neuronsPediatric neurodegenerative disorderRetromer functionMitochondrial morphologyEndolysosomal pathwayMitochondrial defectsProlong lifespanNeurodegenerative phenotypeProgenitor cellsMouse modelRecessive variantsNeurodegenerative disordersGene therapy approachesPathwayInfantile neuroaxonal dystrophyHomologCellsTherapeutic strategiesAzoramidePurkinje cellsFliesPhenotypeMetabolism
2022
Two neuronal peptides encoded from a single transcript regulate mitochondrial complex III in Drosophila
Bosch J, Ugur B, Pichardo-Casas I, Rabasco J, Escobedo F, Zuo Z, Brown B, Celniker S, Sinclair D, Bellen H, Perrimon N. Two neuronal peptides encoded from a single transcript regulate mitochondrial complex III in Drosophila. ELife 2022, 11: e82709. PMID: 36346220, PMCID: PMC9681215, DOI: 10.7554/elife.82709.Peer-Reviewed Original ResearchConceptsSmall open reading framesClasses of genesShares sequence similarityOpen reading frameSequence similarityBicistronic transcriptBiological functionsPhenotypic analysisMitochondrial functionImportant regulatorThousands of peptidesNeuronal functionGenesWealth of informationTranscriptsAnimal lethalityPeptidesRecent studiesParalogsDrosophilaSmORFsMitochondriaRegulatorRegulatesNeuronal peptidesNeuronal activity induces glucosylceramide that is secreted via exosomes for lysosomal degradation in glia
Wang L, Lin G, Zuo Z, Li Y, Byeon S, Pandey A, Bellen H. Neuronal activity induces glucosylceramide that is secreted via exosomes for lysosomal degradation in glia. Science Advances 2022, 8: eabn3326. PMID: 35857503, PMCID: PMC9278864, DOI: 10.1126/sciadv.abn3326.Peer-Reviewed Original Research
2019
cindr, the Drosophila Homolog of the CD2AP Alzheimer’s Disease Risk Gene, Is Required for Synaptic Transmission and Proteostasis
Ojelade S, Lee T, Giagtzoglou N, Yu L, Ugur B, Li Y, Duraine L, Zuo Z, Petyuk V, De Jager P, Bennett D, Arenkiel B, Bellen H, Shulman J. cindr, the Drosophila Homolog of the CD2AP Alzheimer’s Disease Risk Gene, Is Required for Synaptic Transmission and Proteostasis. Cell Reports 2019, 28: 1799-1813.e5. PMID: 31412248, PMCID: PMC6703184, DOI: 10.1016/j.celrep.2019.07.041.Peer-Reviewed Original ResearchConceptsPlasma membrane calcium ATPaseDisease risk genesDisease susceptibility genesSynaptic vesicle recyclingUbiquitin-proteasome systemMembrane calcium ATPaseAlzheimer’s disease risk genesDrosophila homologConserved roleAlzheimer's disease susceptibility genesSynaptic proteostasisAdaptor proteinNeuronal requirementsVesicle recyclingProteostasisCindrRisk genesSusceptibility genesSynapse maturationHuman postmortem brainHuman tauProtein levelsNeurofibrillary tangle pathologyNull miceAD susceptibility
2018
Phospholipase PLA2G6, a Parkinsonism-Associated Gene, Affects Vps26 and Vps35, Retromer Function, and Ceramide Levels, Similar to α-Synuclein Gain
Lin G, Lee P, Chen K, Mao D, Tan K, Zuo Z, Lin W, Wang L, Bellen H. Phospholipase PLA2G6, a Parkinsonism-Associated Gene, Affects Vps26 and Vps35, Retromer Function, and Ceramide Levels, Similar to α-Synuclein Gain. Cell Metabolism 2018, 28: 605-618.e6. PMID: 29909971, DOI: 10.1016/j.cmet.2018.05.019.Peer-Reviewed Original ResearchMeSH KeywordsAlpha-SynucleinAnimalsBrainCell Line, TumorCeramidesDrosophilaDrosophila ProteinsFeedback, PhysiologicalFemaleGroup VI Phospholipases A2Group X Phospholipases A2HeLa CellsHumansLysosomesMaleMembrane FluidityMutationNeuronsNuclear ProteinsParkinson DiseaseRNA-Binding ProteinsSphingolipidsVesicular Transport ProteinsConceptsIPLA2-VIAImpairs synaptic transmissionEarly-onset parkinsonismSynaptic transmissionNeuroaxonal dystrophyParkinson's diseaseNeuronal functionBrain tissueNeurodegenerative disordersΑ-synucleinPLA2G6Ceramide levelsProgressive increaseNeurodegenerationLysosomal stressPositive feedback loopRetromer functionPhospholipid compositionCeramideGlycerol phospholipidsParkinsonismVPS35Desipramine
2016
Uncoupling neuronal death and dysfunction in Drosophila models of neurodegenerative disease
Chouhan A, Guo C, Hsieh Y, Ye H, Senturk M, Zuo Z, Li Y, Chatterjee S, Botas J, Jackson G, Bellen H, Shulman J. Uncoupling neuronal death and dysfunction in Drosophila models of neurodegenerative disease. Acta Neuropathologica Communications 2016, 4: 62. PMID: 27338814, PMCID: PMC4918017, DOI: 10.1186/s40478-016-0333-4.Peer-Reviewed Original ResearchMeSH KeywordsAgingAlpha-SynucleinAmyloid beta-PeptidesAnimalsAnimals, Genetically ModifiedCell DeathDisease Models, AnimalDrosophilaElectroretinographyFemaleHumansMembrane PotentialsMicroelectrodesMicroscopy, Electron, TransmissionNeurodegenerative DiseasesNeuronsPeptide FragmentsRetinaTau ProteinsVision, OcularConceptsAdult Drosophila retinaToxic protein speciesDisease-relevant proteinsMicrotubule-associated protein tauMedium-throughput assaysProgressive photoreceptor cell deathCodon-optimized transgeneCommon neurodegenerative proteinopathiesAdult nervous systemDrosophila retinaNeuronal deathProtein speciesGlial cell typesDrosophila modelParkinson's diseaseNervous systemAlzheimer's diseaseAge-dependent neuronal lossPhotoreceptor cell deathCell deathCell typesProtein tauDrosophilaExpression of tauPotential degenerative changes