2020
Loss- or Gain-of-Function Mutations in ACOX1 Cause Axonal Loss via Different Mechanisms
Chung H, Wangler M, Marcogliese P, Jo J, Ravenscroft T, Zuo Z, Duraine L, Sadeghzadeh S, Li-Kroeger D, Schmidt R, Pestronk A, Rosenfeld J, Burrage L, Herndon M, Chen S, Network M, Shillington A, Vawter-Lee M, Hopkin R, Rodriguez-Smith J, Henrickson M, Lee B, Moser A, Jones R, Watkins P, Yoo T, Mar S, Choi M, Bucelli R, Yamamoto S, Lee H, Prada C, Chae J, Vogel T, Bellen H. Loss- or Gain-of-Function Mutations in ACOX1 Cause Axonal Loss via Different Mechanisms. Neuron 2020, 106: 589-606.e6. PMID: 32169171, PMCID: PMC7289150, DOI: 10.1016/j.neuron.2020.02.021.Peer-Reviewed Original ResearchMeSH KeywordsAcyl-CoA OxidaseAnimalsAxonsDrosophilaHumansMiceMutationNerve DegenerationNeurogliaRatsConceptsSchwann cellsAxonal lossMurine Schwann cellsPrimary Schwann cellsTreatment of fliesLong-chain fatty acid β-oxidation pathwayNeuronal lossGlial lossSynaptic transmissionRate-limiting enzymeDevelopmental delayACOX1Elevated levelsFatty acid β-oxidation pathwayReactive oxygen speciesDifferent mechanismsPupal deathPatientsDominant variantFunction mutationsGliaOxygen speciesTreatmentDe novoCells
2019
Ubiquilins regulate autophagic flux through mTOR signalling and lysosomal acidification
Şentürk M, Lin G, Zuo Z, Mao D, Watson E, Mikos A, Bellen H. Ubiquilins regulate autophagic flux through mTOR signalling and lysosomal acidification. Nature Cell Biology 2019, 21: 384-396. PMID: 30804504, PMCID: PMC6534127, DOI: 10.1038/s41556-019-0281-x.Peer-Reviewed Original ResearchMeSH KeywordsAmyotrophic Lateral SclerosisAnimalsAnimals, Genetically ModifiedAutophagyCarrier ProteinsCell Cycle ProteinsDrosophila melanogasterDrosophila ProteinsGene Expression Regulation, DevelopmentalHEK293 CellsHumansHydrogen-Ion ConcentrationLysosomesMutationNervous SystemSignal TransductionTOR Serine-Threonine KinasesConceptsAutophagic fluxDefective autophagic fluxEndoplasmic reticulum stressReticulum stressRegulator of autophagyConserved roleAmyotrophic lateral sclerosisMammalian cellsProteasomal degradationImpaired proteostasisDemise of neuronsUbiquilinLysosome acidificationFamilial amyotrophic lateral sclerosisLysosomal acidificationATPase activityMTORMutantsAutophagyDrosophilaProteostasisAcidificationCommon featureGenesLateral sclerosisVAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway
Mao D, Lin G, Tepe B, Zuo Z, Tan K, Senturk M, Zhang S, Arenkiel B, Sardiello M, Bellen H. VAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway. Autophagy 2019, 15: 1214-1233. PMID: 30741620, PMCID: PMC6613884, DOI: 10.1080/15548627.2019.1580103.Peer-Reviewed Original ResearchAnimalsAutophagosomesAutophagyCarrier ProteinsDrosophilaDrosophila ProteinsEIF-2 KinaseEndoplasmic ReticulumEndosomesGolgi ApparatusHEK293 CellsHeLa CellsHumansLysosomal-Associated Membrane Protein 2LysosomesMembrane ProteinsMiceMice, Inbred C57BLMutationPhosphatidylinositol PhosphatesRab GTP-Binding ProteinsRab7 GTP-Binding ProteinsR-SNARE ProteinsVesicular Transport Proteins
2018
Phospholipase PLA2G6, a Parkinsonism-Associated Gene, Affects Vps26 and Vps35, Retromer Function, and Ceramide Levels, Similar to α-Synuclein Gain
Lin G, Lee P, Chen K, Mao D, Tan K, Zuo Z, Lin W, Wang L, Bellen H. Phospholipase PLA2G6, a Parkinsonism-Associated Gene, Affects Vps26 and Vps35, Retromer Function, and Ceramide Levels, Similar to α-Synuclein Gain. Cell Metabolism 2018, 28: 605-618.e6. PMID: 29909971, DOI: 10.1016/j.cmet.2018.05.019.Peer-Reviewed Original ResearchMeSH KeywordsAlpha-SynucleinAnimalsBrainCell Line, TumorCeramidesDrosophilaDrosophila ProteinsFeedback, PhysiologicalFemaleGroup VI Phospholipases A2Group X Phospholipases A2HeLa CellsHumansLysosomesMaleMembrane FluidityMutationNeuronsNuclear ProteinsParkinson DiseaseRNA-Binding ProteinsSphingolipidsVesicular Transport ProteinsConceptsIPLA2-VIAImpairs synaptic transmissionEarly-onset parkinsonismSynaptic transmissionNeuroaxonal dystrophyParkinson's diseaseNeuronal functionBrain tissueNeurodegenerative disordersΑ-synucleinPLA2G6Ceramide levelsProgressive increaseNeurodegenerationLysosomal stressPositive feedback loopRetromer functionPhospholipid compositionCeramideGlycerol phospholipidsParkinsonismVPS35Desipramine
2015
A rapid, membrane-dependent pathway directs furrow formation through RalA in the early Drosophila embryo
Holly R, Mavor L, Zuo Z, Blankenship J. A rapid, membrane-dependent pathway directs furrow formation through RalA in the early Drosophila embryo. Development 2015, 142: 2316-2328. PMID: 26092850, PMCID: PMC4510590, DOI: 10.1242/dev.120998.Peer-Reviewed Original ResearchConceptsEarly Drosophila embryoDrosophila embryosFurrow formationPlasma membraneRalA functionMembrane trafficking pathwaysEarly syncytial Drosophila embryoExocyst complex subunitsEarly fly embryoSyncytial Drosophila embryosWild-type embryosMyosin II functionF-actin recruitmentExocyst complexExocytic vesiclesMembrane traffickingFly embryoTrafficking pathwaysComplex subunitsFurrow ingressionChromosomal segregationCytoskeletal remodelingCell divisionCytokinetic furrowRalA