2019
Ubiquilins regulate autophagic flux through mTOR signalling and lysosomal acidification
Şentürk M, Lin G, Zuo Z, Mao D, Watson E, Mikos A, Bellen H. Ubiquilins regulate autophagic flux through mTOR signalling and lysosomal acidification. Nature Cell Biology 2019, 21: 384-396. PMID: 30804504, PMCID: PMC6534127, DOI: 10.1038/s41556-019-0281-x.Peer-Reviewed Original ResearchMeSH KeywordsAmyotrophic Lateral SclerosisAnimalsAnimals, Genetically ModifiedAutophagyCarrier ProteinsCell Cycle ProteinsDrosophila melanogasterDrosophila ProteinsGene Expression Regulation, DevelopmentalHEK293 CellsHumansHydrogen-Ion ConcentrationLysosomesMutationNervous SystemSignal TransductionTOR Serine-Threonine KinasesConceptsAutophagic fluxDefective autophagic fluxEndoplasmic reticulum stressReticulum stressRegulator of autophagyConserved roleAmyotrophic lateral sclerosisMammalian cellsProteasomal degradationImpaired proteostasisDemise of neuronsUbiquilinLysosome acidificationFamilial amyotrophic lateral sclerosisLysosomal acidificationATPase activityMTORMutantsAutophagyDrosophilaProteostasisAcidificationCommon featureGenesLateral sclerosis
2018
A gene-specific T2A-GAL4 library for Drosophila
Lee P, Zirin J, Kanca O, Lin W, Schulze K, Li-Kroeger D, Tao R, Devereaux C, Hu Y, Chung V, Fang Y, He Y, Pan H, Ge M, Zuo Z, Housden B, Mohr S, Yamamoto S, Levis R, Spradling A, Perrimon N, Bellen H. A gene-specific T2A-GAL4 library for Drosophila. ELife 2018, 7: e35574. PMID: 29565247, PMCID: PMC5898912, DOI: 10.7554/elife.35574.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedDrosophila melanogasterDrosophila ProteinsGene Expression ProfilingGene LibraryLuminescent ProteinsMutagenesis, InsertionalOrgan SpecificityTranscription FactorsConceptsFunction phenotypesIntrons of genesExpression of hundredsCell-type specificityLethal insertionsEssential genesGene functionEndogenous promoterLethal mutationsCDNA constructsGene expressionInserted cassettesGenesPowerful resourceExpressionPhenotypeSignal 3DrosophilaGAL4Severe lossIntronsChromosomesTranscriptionCRISPRPromoter
2017
Clinically severe CACNA1A alleles affect synaptic function and neurodegeneration differentially
Luo X, Rosenfeld J, Yamamoto S, Harel T, Zuo Z, Hall M, Wierenga K, Pastore M, Bartholomew D, Delgado M, Rotenberg J, Lewis R, Emrick L, Bacino C, Eldomery M, Coban Akdemir Z, Xia F, Yang Y, Lalani S, Lotze T, Lupski J, Lee B, Bellen H, Wangler M, . Clinically severe CACNA1A alleles affect synaptic function and neurodegeneration differentially. PLOS Genetics 2017, 13: e1006905. PMID: 28742085, PMCID: PMC5557584, DOI: 10.1371/journal.pgen.1006905.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAnimalsAnimals, Genetically ModifiedCalcium ChannelsCerebellar AtaxiaChildChild, PreschoolDrosophila melanogasterFemaleGenome, HumanGenome-Wide Association StudyHumansMaleMicroscopy, Electron, TransmissionMutation, MissenseNeurodegenerative DiseasesNeuroimagingPhenotypePoint MutationConceptsNeurodegenerative phenotypeGenomic rescue constructsS4 transmembrane segmentRescue constructTransmembrane segmentsFunction phenotypesLoss of functionMissense allelesFunction allelesWild typeGlobal developmental delayToxic gainMutant clonesDominant mutationsDevelopmental delayPoint mutationsDrosophilaFunctional impactPhenotypeQ-type voltage-dependent Ca2Early-onset developmental delayNeurological phenotypeAllelesSynaptic functionNovel variants
2016
Uncoupling neuronal death and dysfunction in Drosophila models of neurodegenerative disease
Chouhan A, Guo C, Hsieh Y, Ye H, Senturk M, Zuo Z, Li Y, Chatterjee S, Botas J, Jackson G, Bellen H, Shulman J. Uncoupling neuronal death and dysfunction in Drosophila models of neurodegenerative disease. Acta Neuropathologica Communications 2016, 4: 62. PMID: 27338814, PMCID: PMC4918017, DOI: 10.1186/s40478-016-0333-4.Peer-Reviewed Original ResearchMeSH KeywordsAgingAlpha-SynucleinAmyloid beta-PeptidesAnimalsAnimals, Genetically ModifiedCell DeathDisease Models, AnimalDrosophilaElectroretinographyFemaleHumansMembrane PotentialsMicroelectrodesMicroscopy, Electron, TransmissionNeurodegenerative DiseasesNeuronsPeptide FragmentsRetinaTau ProteinsVision, OcularConceptsAdult Drosophila retinaToxic protein speciesDisease-relevant proteinsMicrotubule-associated protein tauMedium-throughput assaysProgressive photoreceptor cell deathCodon-optimized transgeneCommon neurodegenerative proteinopathiesAdult nervous systemDrosophila retinaNeuronal deathProtein speciesGlial cell typesDrosophila modelParkinson's diseaseNervous systemAlzheimer's diseaseAge-dependent neuronal lossPhotoreceptor cell deathCell deathCell typesProtein tauDrosophilaExpression of tauPotential degenerative changesRab8 directs furrow ingression and membrane addition during epithelial formation in Drosophila melanogaster
Mavor L, Miao H, Zuo Z, Holly R, Xie Y, Loerke D, Blankenship J. Rab8 directs furrow ingression and membrane addition during epithelial formation in Drosophila melanogaster. Development 2016, 143: 892-903. PMID: 26839362, PMCID: PMC4813336, DOI: 10.1242/dev.128876.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsAnimals, Genetically ModifiedCell MembraneCRISPR-Cas SystemsCrosses, GeneticCytoplasmDrosophila melanogasterDrosophila ProteinsEmbryo, NonmammalianEpitheliumExocytosisFemaleGene Expression Regulation, DevelopmentalGolgi ApparatusGTP PhosphohydrolasesGuanosine TriphosphateMaleMembrane ProteinsMicroscopy, ConfocalProtein Structure, TertiaryRab GTP-Binding ProteinsConceptsFurrow ingressionMembrane additionPlasma membranePlasma membrane furrowsLarge cytoplasmic aggregatesCRISPR/Cas9 technologyIntracellular trafficking pathwaysMembrane furrowsRab8 functionDrosophila embryosDrosophila melanogasterTrafficking pathwaysMembrane compartmentsEndogenous localizationProtein Rab11Early embryosCytoplasmic aggregatesCas9 technologyRab8Membrane storesCell surfaceEpithelial sheetsRab11Cell morphologyCompartmental behavior