2020
The Daam2–VHL–Nedd4 axis governs developmental and regenerative oligodendrocyte differentiation
Ding X, Jo J, Wang C, Cristobal C, Zuo Z, Ye Q, Wirianto M, Lindeke-Myers A, Choi J, Mohila C, Kawabe H, Jung S, Bellen H, Yoo S, Lee H. The Daam2–VHL–Nedd4 axis governs developmental and regenerative oligodendrocyte differentiation. Genes & Development 2020, 34: 1177-1189. PMID: 32792353, PMCID: PMC7462057, DOI: 10.1101/gad.338046.120.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationGene Expression Regulation, DevelopmentalHumansMiceMice, KnockoutMicrofilament ProteinsMultiple SclerosisMyelin SheathNedd4 Ubiquitin Protein LigasesNerve RegenerationNervous System DiseasesOligodendrogliaProtein StabilityRho GTP-Binding ProteinsUbiquitinationVon Hippel-Lindau Tumor Suppressor ProteinConceptsWhite matter injuryUbiquitin-proteasomal systemGenetic knockout mouse modelsOligodendrocyte differentiationWhite matter lesionsKnockout mouse modelDemyelination modelMultiple sclerosisDisease-driving proteinsMatter lesionsOligodendrocyte dysfunctionPathogenic accumulationMouse modelDevelopmental myelinationNeurological disordersGlial biologyOligodendrocyte developmentE3 ligase VHLVHLRepairE3 ubiquitinProteomic analysisRemyelinationSclerosisPatients
2019
Ubiquilins regulate autophagic flux through mTOR signalling and lysosomal acidification
Şentürk M, Lin G, Zuo Z, Mao D, Watson E, Mikos A, Bellen H. Ubiquilins regulate autophagic flux through mTOR signalling and lysosomal acidification. Nature Cell Biology 2019, 21: 384-396. PMID: 30804504, PMCID: PMC6534127, DOI: 10.1038/s41556-019-0281-x.Peer-Reviewed Original ResearchMeSH KeywordsAmyotrophic Lateral SclerosisAnimalsAnimals, Genetically ModifiedAutophagyCarrier ProteinsCell Cycle ProteinsDrosophila melanogasterDrosophila ProteinsGene Expression Regulation, DevelopmentalHEK293 CellsHumansHydrogen-Ion ConcentrationLysosomesMutationNervous SystemSignal TransductionTOR Serine-Threonine KinasesConceptsAutophagic fluxDefective autophagic fluxEndoplasmic reticulum stressReticulum stressRegulator of autophagyConserved roleAmyotrophic lateral sclerosisMammalian cellsProteasomal degradationImpaired proteostasisDemise of neuronsUbiquilinLysosome acidificationFamilial amyotrophic lateral sclerosisLysosomal acidificationATPase activityMTORMutantsAutophagyDrosophilaProteostasisAcidificationCommon featureGenesLateral sclerosis
2016
Rab8 directs furrow ingression and membrane addition during epithelial formation in Drosophila melanogaster
Mavor L, Miao H, Zuo Z, Holly R, Xie Y, Loerke D, Blankenship J. Rab8 directs furrow ingression and membrane addition during epithelial formation in Drosophila melanogaster. Development 2016, 143: 892-903. PMID: 26839362, PMCID: PMC4813336, DOI: 10.1242/dev.128876.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsAnimals, Genetically ModifiedCell MembraneCRISPR-Cas SystemsCrosses, GeneticCytoplasmDrosophila melanogasterDrosophila ProteinsEmbryo, NonmammalianEpitheliumExocytosisFemaleGene Expression Regulation, DevelopmentalGolgi ApparatusGTP PhosphohydrolasesGuanosine TriphosphateMaleMembrane ProteinsMicroscopy, ConfocalProtein Structure, TertiaryRab GTP-Binding ProteinsConceptsFurrow ingressionMembrane additionPlasma membranePlasma membrane furrowsLarge cytoplasmic aggregatesCRISPR/Cas9 technologyIntracellular trafficking pathwaysMembrane furrowsRab8 functionDrosophila embryosDrosophila melanogasterTrafficking pathwaysMembrane compartmentsEndogenous localizationProtein Rab11Early embryosCytoplasmic aggregatesCas9 technologyRab8Membrane storesCell surfaceEpithelial sheetsRab11Cell morphologyCompartmental behavior