2023
Heterogeneous murine peribiliary glands orchestrate compartmentalized epithelial renewal
Singh S, Lian Q, Budiman T, Taketo M, Simons B, Gupta V. Heterogeneous murine peribiliary glands orchestrate compartmentalized epithelial renewal. Developmental Cell 2023, 58: 2732-2745.e5. PMID: 37909044, PMCID: PMC10842076, DOI: 10.1016/j.devcel.2023.10.004.Peer-Reviewed Original Research
2020
A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids
Yang L, Han Y, Nilsson-Payant BE, Gupta V, Wang P, Duan X, Tang X, Zhu J, Zhao Z, Jaffré F, Zhang T, Kim TW, Harschnitz O, Redmond D, Houghton S, Liu C, Naji A, Ciceri G, Guttikonda S, Bram Y, Nguyen DT, Cioffi M, Chandar V, Hoagland DA, Huang Y, Xiang J, Wang H, Lyden D, Borczuk A, Chen HJ, Studer L, Pan FC, Ho DD, tenOever BR, Evans T, Schwartz RE, Chen S. A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell 2020, 27: 125-136.e7. PMID: 32579880, PMCID: PMC7303620, DOI: 10.1016/j.stem.2020.06.015.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionHuman disease-relevant cellsSARS-CoV-2 tropismCOVID-19 pathophysiologyExpression of chemokinesRecent clinical studiesHuman pancreatic beta cellsCOVID-19SARS-CoV-2Pancreatic beta cellsLiver organoidsPancreatic endocrine cellsRespiratory failureDopaminergic neuronsClinical studiesPrimary human isletsVirus infectionAutopsy samplesBeta cellsHuman isletsEndocrine cellsOrgan systemsInfectionCholangiocyte organoidsDisease-relevant cellsHedgehog Signaling Demarcates a Niche of Fibrogenic Peribiliary Mesenchymal Cells
Gupta V, Gupta I, Park J, Bram Y, Schwartz RE. Hedgehog Signaling Demarcates a Niche of Fibrogenic Peribiliary Mesenchymal Cells. Gastroenterology 2020, 159: 624-638.e9. PMID: 32289375, PMCID: PMC8204800, DOI: 10.1053/j.gastro.2020.03.075.Peer-Reviewed Original ResearchConceptsCholestatic injuryStellate cellsLiver tissueStromal cellsLiver diseaseBile ductBiliary treePortal tractsMesenchymal cellsPrimary sclerosing cholangitisAlcoholic liver diseaseEpithelial cellsMyofibroblast phenotypeQuantitative reverse transcription polymerase chain reactionBile duct ligationReverse transcription-polymerase chain reactionTranscription-polymerase chain reactionCanals of HeringControl liver tissueHedgehog signalingSclerosing cholangitisHepatic injuryHepatocellular injuryNonalcoholic steatohepatitisPortal fibroblasts
2013
Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration
Fang Y, Gupta V, Karra R, Holdway JE, Kikuchi K, Poss KD. Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 13416-13421. PMID: 23901114, PMCID: PMC3746860, DOI: 10.1073/pnas.1309810110.Peer-Reviewed Original ResearchConceptsHeart regenerationSTAT3 inhibitionCertain lower vertebratesZebrafish heart regenerationRibosome affinity purificationTranslational profilingProgram essentialLower vertebratesAffinity purificationPathway membersSTAT3-dependent mannerZebrafish cardiomyocytesCardiomyocyte proliferationAnimal growthInjury-induced proliferationDynamic inductionProliferationCardiomyocytesInjury responseRegenerationRln3aVertebratesCardiogenesisRNAInhibitionAn Injury-Responsive Gata4 Program Shapes the Zebrafish Cardiac Ventricle
Gupta V, Gemberling M, Karra R, Rosenfeld GE, Evans T, Poss KD. An Injury-Responsive Gata4 Program Shapes the Zebrafish Cardiac Ventricle. Current Biology 2013, 23: 1221-1227. PMID: 23791730, PMCID: PMC3759223, DOI: 10.1016/j.cub.2013.05.028.Peer-Reviewed Original ResearchConceptsVentricular wallCortical layersNormal cardiac functionHeart regenerationHeart failureCardiac damageCardiac functionCardiac ventriclesExpression of GATA4Cellular mechanismsBiomechanical stressCardiomyocytesTransgenic inhibitionGATA4 activityMuscleVentricleZebrafish heart regenerationAdultsDynamic cellular mechanismsClonal analysisOrganismal growthDevelopmental programClonal plasticityJuvenile zebrafishGATA4
2012
Clonally dominant cardiomyocytes direct heart morphogenesis
Gupta V, Poss KD. Clonally dominant cardiomyocytes direct heart morphogenesis. Nature 2012, 484: 479-484. PMID: 22538609, PMCID: PMC3340018, DOI: 10.1038/nature11045.Peer-Reviewed Original ResearchConceptsStem cell populationVertebrate embryosVertebrate organsNew lineageClonal dominanceEmbryonic structuresClonal analysisTissue architectureCell populationsProliferative behaviorIndividual cardiomyocytesAdult formKey mechanismCardiomyocytesAdult cardiac structureCirculatory needsMorphogenesisLineagesEmbryosMaturesDominanceOrgansVariable sizeThick wallsLateral expansion
2011
tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration
Kikuchi K, Gupta V, Wang J, Holdway JE, Wills AA, Fang Y, Poss KD. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 2011, 138: 2895-2902. PMID: 21653610, PMCID: PMC3119303, DOI: 10.1242/dev.067041.Peer-Reviewed Original ResearchConceptsHeart developmentZebrafish heart developmentRecent lineage-tracing studiesLineage-tracing studiesEmbryonic developmentUpstream sequencesHeart regenerationCell typesEpicardial cellsDevelopmental potentialCardiac muscle cellsZebrafishTCF21Muscle cellsPerivascular cellsCellsFateRegenerationCardiogenesisLarvalEpicardial tissueSequenceExpressionDevelopment