2022
Clinical implementation of artificial intelligence in neuroradiology with development of a novel workflow-efficient picture archiving and communication system-based automated brain tumor segmentation and radiomic feature extraction
Aboian M, Bousabarah K, Kazarian E, Zeevi T, Holler W, Merkaj S, Petersen G, Bahar R, Subramanian H, Sunku P, Schrickel E, Bhawnani J, Zawalich M, Mahajan A, Malhotra A, Payabvash S, Tocino I, Lin M, Westerhoff M. Clinical implementation of artificial intelligence in neuroradiology with development of a novel workflow-efficient picture archiving and communication system-based automated brain tumor segmentation and radiomic feature extraction. Frontiers In Neuroscience 2022, 16: 860208. PMID: 36312024, PMCID: PMC9606757, DOI: 10.3389/fnins.2022.860208.Peer-Reviewed Original ResearchBrain tumor segmentationMedical imagesFeature extractionTumor segmentationRadiomic feature extractionDiagnostic workstationDeep learning-based algorithmPatient's medical imagesLearning-based algorithmFeature extraction toolImage processing algorithmsYale New Haven HealthGround truth dataImage annotationAI-segmentationAI algorithmsArtificial intelligenceEnd workflowProcessing algorithmsPicture archivingLarge datasetsLarge expertManual modificationInternal datasetManual segmentation
2021
NIMG-23. MACHINE LEARNING METHODS IN GLIOMA GRADE PREDICTION: A SYSTEMATIC REVIEW
Bahar R, Merkaj S, Brim W, Subramanian H, Zeevi T, Kazarian E, Lin M, Bousabarah K, Payabvash S, Ivanidze J, Cui J, Tocino I, Malhotra A, Aboian M. NIMG-23. MACHINE LEARNING METHODS IN GLIOMA GRADE PREDICTION: A SYSTEMATIC REVIEW. Neuro-Oncology 2021, 23: vi133-vi133. PMCID: PMC8598529, DOI: 10.1093/neuonc/noab196.523.Peer-Reviewed Original ResearchClassical machine learningConvolutional neural networkDeep learningSupport vector machineMachine learningMachine learning technologiesHigher grading accuracyMachine learning methodsArtificial intelligenceML applicationsHighest performing modelLearning technologyNeural networkMultimodal sequencesLearning methodsVector machineCommon algorithmsML methodsTCIA datasetPrimary machinePrediction accuracyGrade predictionGrading accuracyMachinePerforming modelOTHR-12. The development of machine learning algorithms for the differentiation of glioma and brain metastases – a systematic review
Brim W, Jekel L, Petersen G, Subramanian H, Zeevi T, Payabvash S, Bousabarah K, Lin M, Cui J, Brackett A, Mahajan A, Johnson M, Mahajan A, Aboian M. OTHR-12. The development of machine learning algorithms for the differentiation of glioma and brain metastases – a systematic review. Neuro-Oncology Advances 2021, 3: iii17-iii17. PMCID: PMC8351249, DOI: 10.1093/noajnl/vdab071.067.Peer-Reviewed Original ResearchConvolutional neural networkDeep learningML algorithmsMachine Learning AlgorithmsApplication of machineClassical ML algorithmsDevelopment of machineSupport vector machine algorithmVector machine algorithmArtificial intelligenceMachine learningSearch strategyDL modelsLearning algorithmFeature extractionNeural networkMachine algorithmAverage accuracyML methodsCML algorithmAlgorithmHigh accuracyLearningMachineAccuracy