2024
Lesions to the mediodorsal thalamus, but not orbitofrontal cortex, enhance volatility beliefs linked to paranoia
Suthaharan P, Thompson S, Rossi-Goldthorpe R, Rudebeck P, Walton M, Chakraborty S, Noonan M, Costa V, Murray E, Mathys C, Groman S, Mitchell A, Taylor J, Corlett P, Chang S. Lesions to the mediodorsal thalamus, but not orbitofrontal cortex, enhance volatility beliefs linked to paranoia. Cell Reports 2024, 43: 114355. PMID: 38870010, PMCID: PMC11231991, DOI: 10.1016/j.celrep.2024.114355.Peer-Reviewed Original ResearchOrbitofrontal cortexMediodorsal thalamusReward learning rateAssociated with paranoiaExcitotoxic lesionsBrain regionsUnoperated monkeysAction selectionAdaptive behaviorParanoiaBelief updatingMDmcMeaningful changeCortexThalamusBeliefsLearning rateRobust to variabilityCompare performanceRewardBehaviorBrainMonkeysAction policiesPerception
2021
Unlocking the Reinforcement-Learning Circuits of the Orbitofrontal Cortex
Groman SM, Lee D, Taylor JR. Unlocking the Reinforcement-Learning Circuits of the Orbitofrontal Cortex. Behavioral Neuroscience 2021, 135: 120-128. PMID: 34060870, PMCID: PMC8201418, DOI: 10.1037/bne0000414.Peer-Reviewed Original ResearchConceptsOrbitofrontal cortexReinforcement-learning mechanismsDecision-making impairmentsDiverse clinical populationsDecision-making differsNeurocomputational approachOFC dysfunctionNeuroscience techniquesBiobehavioral disordersBehavioral paradigmsClinical populationsBiobehavioral mechanismsAddiction pathologyComputational differencesReinforcement-learning algorithms
2016
Hypofrontality and Posterior Hyperactivity in Early Schizophrenia: Imaging and Behavior in a Preclinical Model
Kaneko G, Sanganahalli BG, Groman SM, Wang H, Coman D, Rao J, Herman P, Jiang L, Rich K, de Graaf RA, Taylor JR, Hyder F. Hypofrontality and Posterior Hyperactivity in Early Schizophrenia: Imaging and Behavior in a Preclinical Model. Biological Psychiatry 2016, 81: 503-513. PMID: 27450031, PMCID: PMC5130616, DOI: 10.1016/j.biopsych.2016.05.019.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBehavior, AnimalBiomarkersBrainDecision MakingDiffusion Tensor ImagingDisease Models, AnimalFemaleMagnetic Resonance ImagingMagnetic Resonance SpectroscopyMaleMethylazoxymethanol AcetateMultimodal ImagingPrefrontal CortexRatsRats, Sprague-DawleyReversal LearningRewardSchizophreniaSchizophrenic PsychologyConceptsMAM ratsEarly schizophreniaReversal-learning taskEarly behavioral markersResting-state functional magnetic resonanceFunctional magnetic resonanceMethylazoxymethanol acetate (MAM) rat modelFunctional brain biomarkersPerceptual problemsBehavioral markersOrbitofrontal cortexLate adolescenceFunctional connectivityRat modelEarly diagnosisThree-choiceBehavioral studiesBehavioral symptomsPosterior corpus callosumSubstance abuseProdromal patientsSubthreshold symptomsVisual cortexBrain biomarkersSaline-treated controls
2013
Monoamine Levels Within the Orbitofrontal Cortex and Putamen Interact to Predict Reversal Learning Performance
Groman SM, James AS, Seu E, Crawford MA, Harpster SN, Jentsch JD. Monoamine Levels Within the Orbitofrontal Cortex and Putamen Interact to Predict Reversal Learning Performance. Biological Psychiatry 2013, 73: 756-762. PMID: 23332512, PMCID: PMC3615106, DOI: 10.1016/j.biopsych.2012.12.002.Peer-Reviewed Original ResearchConceptsGoal-directed behaviorOrbitofrontal cortexReward-directed behaviorPsychiatric disordersObsessive-compulsive disorderIndividual differencesAssociative learningInflexible behaviorBehavioral flexibilityBehavioral addictionsCompulsive behaviorsImportant modulatory influenceDiscrimination problemNeuromodulatory systemsPutamen dopamineNeurochemical dysfunctionBehavioral impairmentsNeurochemical levelsNeurochemical systemsDorsal striatumModulatory influenceCurrent studyDopamine levelsCortexNeurochemical differences
2011
Asenapine effects on cognitive and monoamine dysfunction elicited by subchronic phencyclidine administration
Elsworth JD, Groman SM, Jentsch JD, Valles R, Shahid M, Wong E, Marston H, Roth RH. Asenapine effects on cognitive and monoamine dysfunction elicited by subchronic phencyclidine administration. Neuropharmacology 2011, 62: 1442-1452. PMID: 21875607, PMCID: PMC3711239, DOI: 10.1016/j.neuropharm.2011.08.026.Peer-Reviewed Original ResearchConceptsBrain regionsExecutive functionCognitive dysfunctionPrefrontal cortexCognitive deficitsSubchronic phencyclidine administrationCognition-enhancing effectsDysregulation of neurotransmissionSame brain regionsReversal taskSpecific brain regionsPoor reversalAsenapine effectsOrbitofrontal cortexTrend levelSerotonin turnoverSerotonin utilizationControl monkeysFine motor functionPhencyclidine administrationMotor functionDeficitsDaily administrationNormal monkeysDiscrete brain regions
2010
Behavioral Characteristics and Neural Mechanisms Mediating Performance in a Rodent Version of the Balloon Analog Risk Task
Jentsch JD, Woods JA, Groman SM, Seu E. Behavioral Characteristics and Neural Mechanisms Mediating Performance in a Rodent Version of the Balloon Analog Risk Task. Neuropsychopharmacology 2010, 35: 1797-1806. PMID: 20375994, PMCID: PMC3055471, DOI: 10.1038/npp.2010.47.Peer-Reviewed Original ResearchConceptsBalloon Analogue Risk TaskRisk TaskPotential food rewardsMedial prefrontal cortexBiomarker of vulnerabilityRodent versionRisk-taking behaviorNeural basisIncentive motivationSuboptimal respondingFood rewardOrbitofrontal cortexPrefrontal cortexNeural circuitryHigh risk takingRewardGreater rewardsSubset of ratsLaboratory measuresFood pelletsHigh-risk behaviorsBehavioral characteristicsTaskCortexGreat public health concern