2001
Telencephalic origin of human thalamic GABAergic neurons
Letinic K, Rakic P. Telencephalic origin of human thalamic GABAergic neurons. Nature Neuroscience 2001, 4: 931-936. PMID: 11528425, DOI: 10.1038/nn0901-931.Peer-Reviewed Original ResearchConceptsNon-primate mammalian speciesHomeodomain-containing proteinMigratory pathwaysThalamic association nucleiVital dye labelingEvolutionary expansionMammalian speciesAssociation nucleiTelencephalic cellsRodent embryosGuidance cuesChemorepulsive cuesMigration assaysOrganotypic slice culturesDye labelingProliferative zoneNon-human primatesGABAergic neuronsDiencephalic neuronsPathwayDorsal thalamusTelencephalic originGanglionic eminenceSlice culturesNeurons
2000
Differential Modulation of Proliferation in the Neocortical Ventricular and Subventricular Zones
Haydar T, Wang F, Schwartz M, Rakic P. Differential Modulation of Proliferation in the Neocortical Ventricular and Subventricular Zones. Journal Of Neuroscience 2000, 20: 5764-5774. PMID: 10908617, PMCID: PMC3823557, DOI: 10.1523/jneurosci.20-15-05764.2000.Peer-Reviewed Original ResearchMeSH Keywords6-Cyano-7-nitroquinoxaline-2,3-dioneAnimalsAntimetabolitesBromodeoxyuridineCell DifferentiationCell DivisionCell MovementCerebral VentriclesClone CellsExcitatory Amino Acid AgonistsExcitatory Amino Acid AntagonistsFetusGABA AgonistsGABA AntagonistsGamma-Aminobutyric AcidGlutamic AcidKainic AcidMiceMice, Inbred ICRMuscimolNeocortexNeuronsOrgan Culture TechniquesStem CellsConceptsVentricular zoneNeural progenitor populationsNeural progenitor proliferationSubventricular zoneProgenitor populationsCell cycleProgenitor cloneProgenitor proliferationEmbryonic cerebrumNeocortical growthProliferationDifferential responsivenessRecent studiesBromodeoxyuridine uptakeDifferential modulationOrganotypic slice culturesClassical neurotransmitters GABAOpposite effectNeurotransmitter GABARelative contributionClonesDisparate effectsRegulationSlice culturesSpecific GABA
1992
Expression of GABA and GABAa receptors by neurons of the subplate zone in developing primate occipital cortex: Evidence for transient local circuits
Meinecke D, Rakic P. Expression of GABA and GABAa receptors by neurons of the subplate zone in developing primate occipital cortex: Evidence for transient local circuits. The Journal Of Comparative Neurology 1992, 317: 91-101. PMID: 1315345, DOI: 10.1002/cne.903170107.Peer-Reviewed Original ResearchConceptsSubplate zoneExpression of GABASitu hybridizationGABAA receptorsTrophic interactionsPlasma membraneGABAA/benzodiazepine receptor complexGABAA receptor subunit mRNAsMammalian telencephalonUnlabeled axon terminalsTransient subplate zoneGABAA receptor subunitsLines of evidenceLocal neuronal circuitsBenzodiazepine receptor complexReceptor subunit mRNAsHybridization signalsReceptor complexSubunitsReceptor moleculesReceptor subunitsSubplate neuronsCortical afferentsSymmetrical synapsesEmbryonic day
1990
Developmental expression of GABA and subunits of the GABAA receptor complex in an inhibitory synaptic circuit in the rat cerebellum
Meinecke D, Rakic P. Developmental expression of GABA and subunits of the GABAA receptor complex in an inhibitory synaptic circuit in the rat cerebellum. Brain Research 1990, 55: 73-86. PMID: 2170058, DOI: 10.1016/0165-3806(90)90107-a.Peer-Reviewed Original ResearchConceptsGABAA receptor subunitsGranule cellsSynaptic circuitsGABAA receptorsPresynaptic elementsReceptor labelingReceptor subunitsGABAA/benzodiazepine receptor complexGolgi II neuronsInhibitory synaptic circuitsSpecific synaptic circuitsGranular layerInhibitory transmitter GABAFifth postnatal dayGABAA receptor complexCentral nervous systemCerebellum of ratsBenzodiazepine receptor complexMature granule cellsReceptor complexPresence of GABAInternal granular layerAlpha 1 subunitGABA transmittersGABAergic afferents
1986
GABA and GAD immunoreactiviy of photoreceptor terminals in primate retina
Nishimura Y, Schwartz M, Rakic P. GABA and GAD immunoreactiviy of photoreceptor terminals in primate retina. Nature 1986, 320: 753-756. PMID: 3703002, DOI: 10.1038/320753a0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsGamma-Aminobutyric AcidGlutamate DecarboxylaseHumansImmune SeraMacacaPhotoreceptor CellsConceptsPhotoreceptor terminalsRhesus monkey retinaFirst-order synapsesGlutamic acid decarboxylasePresynaptic profilesΓ-aminobutyric acidMonkey retinaPerifoveal regionInhibitory neurotransmitterPrimate retinaCone terminalsHorizontal cellsSynaptic functionAcid decarboxylaseRetinaPhotoreceptor cellsVertebrate retinaUltrastructural characteristicsNeurotransmittersAntibodiesSynapsesPresent studyCellsGABAVisual signals
1985
Localization of γ-aminobutyric acid and glutamic acid decarboxylase in rhesus monkey retina
Nishimura Y, Schwartz M, Rakic P. Localization of γ-aminobutyric acid and glutamic acid decarboxylase in rhesus monkey retina. Brain Research 1985, 359: 351-355. PMID: 3907753, DOI: 10.1016/0006-8993(85)91449-0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsGamma-Aminobutyric AcidGlutamate DecarboxylaseImmunoenzyme TechniquesMacaca mulattaNeuronsRetinaConceptsGlutamic acid decarboxylaseGamma-aminobutyric acidAcid decarboxylaseRhesus monkey retinaGanglion cell layerOuter plexiform layerScleral halfΓ-aminobutyric acidMonkey retinaPlexiform layerUse of antiseraGlial cellsMüller cellsHorizontal cellsRhesus monkeysNeuronal processesReactive bandsSubclass of cellsCell layerImmunoreactive bandsOne-thirdRetinaCellsAmacrineDecarboxylase