2017
Linaclotide activates guanylate cyclase‐C/cGMP/protein kinase‐II‐dependent trafficking of CFTR in the intestine
Ahsan K, Tchernychev B, Kessler MM, Solinga RM, Arthur D, Linde CI, Silos‐Santiago I, Hannig G, Ameen NA. Linaclotide activates guanylate cyclase‐C/cGMP/protein kinase‐II‐dependent trafficking of CFTR in the intestine. Physiological Reports 2017, 5: e13299. PMID: 28592587, PMCID: PMC5471438, DOI: 10.14814/phy2.13299.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineCell Line, TumorCell MembraneCyclic AMP-Dependent Protein KinasesCyclic GMPCyclic GMP-Dependent Protein Kinase Type IICystic Fibrosis Transmembrane Conductance RegulatorGuanylyl Cyclase C AgonistsHumansIntestinal MucosaMalePeptidesProtein TransportRatsRats, Sprague-DawleyReceptors, Guanylate Cyclase-CoupledSignal TransductionConceptsRat intestinal loopsLinaclotide treatmentFluid secretionIntestinal loopsCystic fibrosis transmembrane conductance regulatorCell surfaceFibrosis transmembrane conductance regulatorCell surface traffickingChronic idiopathic constipationIrritable bowel syndromeTransmembrane conductance regulatorIntestinal fluid secretionCell surface translocationReceptor guanylyl cyclaseHuman intestinal tissueCaco-2BBe cellsCFTR traffickingCFTR pathwaySubapical compartmentCellular signalingCGMP/PKGProtein kinaseSurface biotinylationIdiopathic constipationPathway components
2015
Restoration of cytoskeletal and membrane tethering defects but not defects in membrane trafficking in the intestinal brush border of mice lacking both myosin Ia and myosin VI
Hegan PS, Kravtsov DV, Caputo C, Egan ME, Ameen NA, Mooseker MS. Restoration of cytoskeletal and membrane tethering defects but not defects in membrane trafficking in the intestinal brush border of mice lacking both myosin Ia and myosin VI. Cytoskeleton 2015, 72: 455-476. PMID: 26286357, PMCID: PMC4715533, DOI: 10.1002/cm.21238.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsApoptosisCell MembraneCell NucleusColitisCrosses, GeneticCystic Fibrosis Transmembrane Conductance RegulatorCytoskeletonDisease ProgressionDuodenumEndosomesEpitheliumGenotypeIn Situ Nick-End LabelingIntestinal MucosaIntestinesMaleMiceMice, KnockoutMicroscopy, Electron, TransmissionMicroscopy, FluorescenceMicrovilliMutationMyosin Heavy ChainsMyosin Type IPhosphates
2001
Anomalous apical plasma membrane phenotype in CK8-deficient mice indicates a novel role for intermediate filaments in the polarization of simple epithelia
Ameen N, Figueroa Y, Salas P. Anomalous apical plasma membrane phenotype in CK8-deficient mice indicates a novel role for intermediate filaments in the polarization of simple epithelia. Journal Of Cell Science 2001, 114: 563-575. PMID: 11171325, DOI: 10.1242/jcs.114.3.563.Peer-Reviewed Original ResearchConceptsIntermediate filamentsPolarized epithelial cellsApical membrane proteinsEpithelial cellsSyntaxin 3Apical domainFemale sterilityMembrane proteinsApical markerNovel functionGamma-tubulinNovel roleApical poleSimple epitheliaCell typesColorectal hyperplasiaCK intermediate filamentsNull micePhenotypeBasolateral levelsNecrotic cellsMembrane phenotypeCellsFilamentsCytoplasm of enterocytes
2000
Subcellular distribution of CFTR in rat intestine supports a physiologic role for CFTR regulation by vesicle traffic
Ameen N, van Donselaar E, Posthuma G, de Jonge H, McLaughlin G, Geuze H, Marino C, Peters P. Subcellular distribution of CFTR in rat intestine supports a physiologic role for CFTR regulation by vesicle traffic. Histochemistry And Cell Biology 2000, 114: 219-228. PMID: 11083465, DOI: 10.1007/s004180000167.Peer-Reviewed Original ResearchConceptsCystic fibrosis transmembrane conductance regulatorVesicle trafficSubcellular distributionVesicle insertionCAMP stimulationCAMP-activated chloride channelCryoimmunogold electron microscopyFibrosis transmembrane conductance regulatorApical plasma membraneTransmembrane conductance regulatorCultured intestinal cellsCFTR regulationCHE cellsPhysiologic roleVesicular compartmentsPlasma membraneApical redistributionConductance regulatorSubapical vesiclesCellular distributionChloride channelsSecretory cellsIntestinal cellsEpithelial cellsCellsMicrovillus Inclusion Disease: A Genetic Defect Affecting Apical Membrane Protein Traffic in Intestinal Epithelium
Ameen N, Salas P. Microvillus Inclusion Disease: A Genetic Defect Affecting Apical Membrane Protein Traffic in Intestinal Epithelium. Traffic 2000, 1: 76-83. PMID: 11208062, DOI: 10.1034/j.1600-0854.2000.010111.x.Peer-Reviewed Original ResearchConceptsMicrovillus inclusion diseaseApical membrane trafficMembrane protein trafficVacuolar apical compartmentApical membrane markersMicrovillus inclusionsF-actin layerBasolateral proteinsFirst genetic defectMembrane trafficTissue culture epithelial cellsProtein trafficApical exocytosisLater stepsApical membraneMembrane markersTerminal webImmunofluorescence analysisApical cytoplasmGenetic defectsEpithelial cellsProteinApical compartmentIntestinal epitheliumNormal microtubules
1999
CFTR channel insertion to the apical surface in rat duodenal villus epithelial cells is upregulated by VIP in vivo
Ameen N, Martensson B, Bourguinon L, Marino C, Isenberg J, McLaughlin G. CFTR channel insertion to the apical surface in rat duodenal villus epithelial cells is upregulated by VIP in vivo. Journal Of Cell Science 1999, 112: 887-894. PMID: 10036238, DOI: 10.1242/jcs.112.6.887.Peer-Reviewed Original ResearchConceptsCystic fibrosis transmembrane conductance regulator (CFTR) channelVillus epithelial cellsApical surfaceApical plasma membraneAnti-CFTR antibodiesQuantitative confocal microscopyNew protein synthesisApical membrane insertionIntestinal villus epithelial cellsEpithelial cellsMembrane CFTRMembrane insertionApical cytoskeletonNormal CFTRCHE cellsPlasma membraneAbsence of cycloheximideSubcellular redistributionC-terminusCFTR channelsCAMP stimulationIntracellular cAMP levelsProtein synthesisChannel insertionCFTR function