2024
Chemical, biochemical, and structural similarities and differences of dermatological cAMP phosphodiesterase-IV inhibitors
Wang J, Ho M, Bunick C. Chemical, biochemical, and structural similarities and differences of dermatological cAMP phosphodiesterase-IV inhibitors. Journal Of Investigative Dermatology 2024 PMID: 39608668, DOI: 10.1016/j.jid.2024.10.597.Peer-Reviewed Original ResearchTreatment of psoriasisTopical treatmentAtopic dermatitisTopical treatment of atopic dermatitisIncreased cellular cAMP concentrationOral treatment of psoriasisPDE4 inhibitorsTopical treatment of psoriasisTreatment of atopic dermatitisCellular cAMP concentrationAnti-inflammatory effectsPhosphodiesterase-IV inhibitorImmune cellsOral treatmentPDE4 inhibitionSeborrheic dermatitisInflammatory responseCAMP concentrationAdenosine monophosphateRoflumilastDuration of cAMP signalingPDE4CAMP signalingDermatitisApremilastUnveiling the secrets of vimentin filament architecture relevant to human disease
Lomakin I, Ho M, Bunick C. Unveiling the secrets of vimentin filament architecture relevant to human disease. Nature Structural & Molecular Biology 2024, 31: 849-851. PMID: 38684931, DOI: 10.1038/s41594-024-01301-x.Peer-Reviewed Original ResearchAltered skin microbiome, inflammation, and JAK/STAT signaling in Southeast Asian ichthyosis patients
Ho M, Nguyen H, Van Hoang M, Bui T, Vu B, Dinh T, Vo H, Blaydon D, Eldirany S, Bunick C, Bui C. Altered skin microbiome, inflammation, and JAK/STAT signaling in Southeast Asian ichthyosis patients. Human Genomics 2024, 18: 38. PMID: 38627868, PMCID: PMC11022333, DOI: 10.1186/s40246-024-00603-x.Peer-Reviewed Original ResearchConceptsSkin microbiomeCI patientsJAK/STAT-signaling pathwayRecurrent pathogenic variantsMeta-genomeCommensal microbiotaHereditary skin disordersJAK/STAT signalingIncreased production of inflammatory cytokinesIncreased susceptibility to infectionJAK/STAT-signalingPeripheral blood mononuclear cellsPathogenic variantsAge- and gender-matched controlsSkin barrier defectsHigher colonizationResultsThis case-control studyProduction of inflammatory cytokinesMicrobial populationsBlood mononuclear cellsImproving therapeutic managementEpidermal scalesCase-control studyMicrobiomeGender-matched controlsStructural Basis for p19 Targeting by Anti–IL-23 Biologics: Correlations with Short- and Long-Term Efficacy in Psoriasis
Daniele S, Eldirany S, Damiani G, Ho M, Bunick C. Structural Basis for p19 Targeting by Anti–IL-23 Biologics: Correlations with Short- and Long-Term Efficacy in Psoriasis. JID Innovations 2024, 4: 100261. PMID: 38445231, PMCID: PMC10914523, DOI: 10.1016/j.xjidi.2024.100261.Peer-Reviewed Original ResearchIL-23Clinical efficacyIL-23 inhibitors risankizumabSurface areaLong-term clinical efficacyMolecular propertiesIL-23 inhibitorsSolvent accessible surface areaHydrogen-deuterium exchangeIL-23 p19 subunitAccessible surface areaAssociated with short-Clinical efficacy scorePlaque psoriasisClinical responseP19 subunitCrystallographic experimentsPsoriasis pathogenesisReceptor epitopesInhibitor epitopesPsoriasisLinear regression analysisEfficacyTherapeutic classesBinding affinity
2023
831 The skin microbiome and inflammation of Southeast Asian patients with cutaneous ichthyosis
Bui B, Ho M, Bunick C. 831 The skin microbiome and inflammation of Southeast Asian patients with cutaneous ichthyosis. Journal Of Investigative Dermatology 2023, 143: s143. DOI: 10.1016/j.jid.2023.03.841.Peer-Reviewed Original Research
2022
Update of the keratin gene family: evolution, tissue-specific expression patterns, and relevance to clinical disorders
Ho M, Thompson B, Fisk JN, Nebert DW, Bruford EA, Vasiliou V, Bunick CG. Update of the keratin gene family: evolution, tissue-specific expression patterns, and relevance to clinical disorders. Human Genomics 2022, 16: 1. PMID: 34991727, PMCID: PMC8733776, DOI: 10.1186/s40246-021-00374-9.Peer-Reviewed Original ResearchConceptsTissue-specific expression patternsKeratin genesExpression patternsHuman disease-causing variantsType II keratin genesGenotype-Tissue Expression (GTEx) projectIntermediate filament genesKeratin gene familyEarly metazoan evolutionGene expression patternsAmphibian genomesZebrafish genomeAnimal genomesParalogous proteinsMetazoan evolutionGene expansionChromosome 17q21.2Gene familyFilament genesSpecies survivalDivergent functionsExpression projectChromosomal segmentsChr 11Chr 15
2020
Recent insight into intermediate filament structure
Eldirany SA, Lomakin IB, Ho M, Bunick CG. Recent insight into intermediate filament structure. Current Opinion In Cell Biology 2020, 68: 132-143. PMID: 33190098, PMCID: PMC7925366, DOI: 10.1016/j.ceb.2020.10.001.Peer-Reviewed Original ResearchConceptsIntermediate filamentsAssembly mechanismVariable N-terminalMultiple cellular processesCentral rod domainIntermediate filament structureCoil 1BCellular processesStudy of keratinsTail domainFilament assemblyRod domainC-terminalN-terminalElectrostatic surfacePathologic mutationsKey playersFilament structureRecent insightsComplex formationProteinHuman tissuesGlial fibrillary acidic proteinAcidic proteinDomainMolecular Modeling of Pathogenic Mutations in the Keratin 1B Domain
Hinbest AJ, Eldirany SA, Ho M, Bunick CG. Molecular Modeling of Pathogenic Mutations in the Keratin 1B Domain. International Journal Of Molecular Sciences 2020, 21: 6641. PMID: 32927888, PMCID: PMC7555247, DOI: 10.3390/ijms21186641.Peer-Reviewed Original ResearchStructural properties of target binding by profilaggrin A and B domains and other S100 fused-type calcium-binding proteins
Hinbest AJ, Kim SR, Eldirany SA, Lomakin IB, Watson J, Ho M, Bunick CG. Structural properties of target binding by profilaggrin A and B domains and other S100 fused-type calcium-binding proteins. Journal Of Dermatological Science 2020, 100: 39-49. PMID: 32893105, PMCID: PMC7752840, DOI: 10.1016/j.jdermsci.2020.08.009.Peer-Reviewed Original ResearchAmino Acid SequenceAnnexin A2Binding SitesCrystallography, X-RayFilaggrin ProteinsHumansHydrophobic and Hydrophilic InteractionsIntermediate Filament ProteinsIntermediate FilamentsKeratinocytesKeratinsMolecular Docking SimulationMutationProtein BindingProtein Conformation, alpha-HelicalProtein DomainsProtein PrecursorsRecombinant ProteinsS100 ProteinsCrystal Structure of Keratin 1/10(C401A) 2B Heterodimer Demonstrates a Proclivity for the C-Terminus of Helix 2B to Form Higher Order Molecular Contacts.
Lomakin IB, Hinbest AJ, Ho M, Eldirany SA, Bunick CG. Crystal Structure of Keratin 1/10(C401A) 2B Heterodimer Demonstrates a Proclivity for the C-Terminus of Helix 2B to Form Higher Order Molecular Contacts. The Yale Journal Of Biology And Medicine 2020, 93: 3-17. PMID: 32226330, PMCID: PMC7087056.Peer-Reviewed Original ResearchStructural Basis for How Biologic Medicines Bind their Targets in Psoriasis Therapy.
Eldirany SA, Ho M, Bunick CG. Structural Basis for How Biologic Medicines Bind their Targets in Psoriasis Therapy. The Yale Journal Of Biology And Medicine 2020, 93: 19-27. PMID: 32226331, PMCID: PMC7087057.Peer-Reviewed Original ResearchConceptsBiologic therapyTumor necrosis factor alphaFirst-line treatmentTreatment of psoriasisNecrosis factor alphaClinical responseInterleukin-17Interleukin-23Line treatmentPrescribing practicesPsoriasis therapyInflammatory disordersTreatment optionsTherapeutic decisionsClinical dataFactor alphaPatient safetyTherapySignificant differencesBiologic medicinesDrugsEpitope locationMolecular differencesTreatmentMedicationsThe Interface between Keratin Structurotype and Human Disease
Eldirany SA, Ho M, Bunick CG. The Interface between Keratin Structurotype and Human Disease. Structure 2020, 28: 271-273. PMID: 32130887, PMCID: PMC7252399, DOI: 10.1016/j.str.2020.02.002.Peer-Reviewed Original Research
2019
ARID1A‐SIN3A drives retinoic acid‐induced neuroblastoma differentiation by transcriptional repression of TERT
Bui C, Le H, Vu D, Truong K, Nguyen N, Ho M, Truong D. ARID1A‐SIN3A drives retinoic acid‐induced neuroblastoma differentiation by transcriptional repression of TERT. Molecular Carcinogenesis 2019, 58: 1998-2007. PMID: 31365169, DOI: 10.1002/mc.23091.Peer-Reviewed Original ResearchMeSH KeywordsCell DifferentiationCell Line, TumorChild, PreschoolDNA-Binding ProteinsFemaleGene Expression Regulation, NeoplasticHumansInfantInfant, NewbornMaleNeuroblastomaRepressor ProteinsSin3 Histone Deacetylase and Corepressor ComplexTelomeraseTranscription FactorsTranscription, GeneticTretinoinConceptsEpigenetic regulationNB differentiationChromatin Remodeling ComplexKey epigenetic pathwaysChromatin immunoprecipitation-qPCRAT-rich interaction domain 1AImmature differentiation stateExact molecular mechanismsRemodeling complexRepressor complexTranscriptional repressionEpigenetic pathwaysEpigenetic dysregulationDNA bindingMolecular mechanismsMultiple cancer typesTelomerase reverse transcriptase (TERT) promoterQuantitative real-time polymerase chain reactionReverse transcriptase promoterHigh telomerase activityDifferentiation stateSwitch/Polymerase chain reactionTERT expressionDomain 1AHuman keratin 1/10‐1B tetramer structures reveal a knob‐pocket mechanism in intermediate filament assembly
Eldirany SA, Ho M, Hinbest AJ, Lomakin IB, Bunick CG. Human keratin 1/10‐1B tetramer structures reveal a knob‐pocket mechanism in intermediate filament assembly. The EMBO Journal 2019, 38: embj2018100741. PMID: 31036554, PMCID: PMC6545558, DOI: 10.15252/embj.2018100741.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SubstitutionCircular DichroismCrystallography, X-RayCytoskeletonDynamic Light ScatteringHumansHydrophobic and Hydrophilic InteractionsIntermediate Filament ProteinsKeratin-1Keratin-10Models, MolecularMutation, MissenseProtein FoldingProtein Interaction Domains and MotifsProtein MultimerizationProtein Structure, QuaternaryProtein Structure, SecondarySkin DiseasesConceptsFilament assemblyN-terminal hydrophobic pocketIntermediate filament assemblyTetramer assemblyÅ structureÅ resolutionCircular dichroism measurementsTetramer formationAssembly mechanismHydrophobic faceHydrophobic pocketSecondary structureOctamer structureEpidermolytic palmoplantar keratodermaKeratin filamentsIntermediate filamentsMutationsPathogenic mutationsTetramer structureDichroism measurementsAtomic resolutionAssemblyBiochemical determinantsKeratin 1/10TetramerSuppression of the Ubiquitin Pathway by Small Molecule Binding to Ubiquitin Enhances Doxorubicin Sensitivity of the Cancer Cells
Nguyen T, Ho M, Kim K, Yun S, Mizar P, Easton J, Lee S, Kim K. Suppression of the Ubiquitin Pathway by Small Molecule Binding to Ubiquitin Enhances Doxorubicin Sensitivity of the Cancer Cells. Molecules 2019, 24: 1073. PMID: 30893775, PMCID: PMC6471062, DOI: 10.3390/molecules24061073.Peer-Reviewed Original ResearchConceptsCongo redUbiquitin processing enzymesAnticancer drugsDiazo compoundsNovel anticancer drugsSmall moleculesActivity of ubiquitinNMR mappingDevelopment of inhibitorsSurface of ubiquitinConventional anticancer drugsMoleculesDruggabilityUbiquitin moleculesPromising strategyRecognition sitesProof of conceptCompoundsRedSensitizersHereinBindingBinding of ubiquitinChemicalsScaffolds
2016
An ubiquitin-binding molecule can work as an inhibitor of ubiquitin processing enzymes and ubiquitin receptors
Nguyen T, Ho M, Ghosh A, Kim T, Yun S, Lee S, Kim K. An ubiquitin-binding molecule can work as an inhibitor of ubiquitin processing enzymes and ubiquitin receptors. Biochemical And Biophysical Research Communications 2016, 479: 33-39. PMID: 27613091, DOI: 10.1016/j.bbrc.2016.09.010.Peer-Reviewed Original ResearchConceptsUbiquitin processing enzymesUbiquitin receptorsUbiquitin pathwayProcessing enzymesBinding of ubiquitinDiverse biological processesCancer cell migrationBiological roleBiological processesUbiquitinCell migrationEnzymatic activityInteracting surfacesCritical rolePathwayEnzymeRelated diseasesRelevant diseasesInhibitorsReceptorsBindsMoleculesRoleBindingInteraction