2024
P10.25.A STANDARDIZATION AND AUTOMATIZATION OF MEASURING AND REPORTING BRAIN METASTASIS OVER TIME BY LEVERAGING ARTIFICIAL INTELLIGENCE
Weiss D, Bousabarah K, Deuschl C, Chadha S, Ashraf N, Ramakrishnan D, Moawad A, Osenberg K, Schoenherr S, Lautenschlager J, Holler W, Westerhoff M, Schrickel E, Memon F, Moily N, Malhotra A, Lin M, Aboian M. P10.25.A STANDARDIZATION AND AUTOMATIZATION OF MEASURING AND REPORTING BRAIN METASTASIS OVER TIME BY LEVERAGING ARTIFICIAL INTELLIGENCE. Neuro-Oncology 2024, 26: v61-v61. PMCID: PMC11485790, DOI: 10.1093/neuonc/noae144.201.Peer-Reviewed Original ResearchReports of brain metastasesBrain metastasesInter-observer variabilityFollow-up imaging of patientsPost-Gamma knife radiosurgeryBrain tumorsRANO-BM criteriaFollow-up imagingBoard-certified neuroradiologistsTreatment response monitoringMean Dice coefficientImages of patientsNnU-Net segmentationManual diameter measurementsBM evaluationRANO-BMRetrospective studyTreatment regimenSpearman correlation coefficientInter-rater variabilityMRI reportsIdentified lesionsPercentual changePost-gammaNeuroradiologistsAcceleration of Volumetric Abdominal Aortic Aneurysm Measurements by Leveraging Artificial Intelligence
Weiss D, Hager T, Aboian M, Lin M, Bousabarah K, Renninghoff D, Holler W, Simmons K, Loh S, Fischer U, Deuschl C, Aneja S, Aboian E. Acceleration of Volumetric Abdominal Aortic Aneurysm Measurements by Leveraging Artificial Intelligence. Journal Of Vascular Surgery 2024, 80: e37-e38. DOI: 10.1016/j.jvs.2024.06.066.Peer-Reviewed Original ResearchTumor response assessment in hepatocellular carcinoma treated with immunotherapy: imaging biomarkers for clinical decision-making
Sobirey R, Matuschewski N, Gross M, Lin M, Kao T, Kasolowsky V, Strazzabosco M, Stein S, Savic L, Gebauer B, Jaffe A, Duncan J, Madoff D, Chapiro J. Tumor response assessment in hepatocellular carcinoma treated with immunotherapy: imaging biomarkers for clinical decision-making. European Radiology 2024, 35: 1-11. PMID: 39033181, DOI: 10.1007/s00330-024-10955-6.Peer-Reviewed Original ResearchMedian overall survivalTumor response criteriaTumor response assessmentHepatocellular carcinoma patientsHepatocellular carcinomaTumor responseOverall survivalResponse criteriaResponse assessmentNon-respondersPoorer median overall survivalPrediction of tumor responsePredictive valueHepatocellular carcinoma immunotherapyDisease controlPrognostic of survivalClinical baseline parametersLog-rank testKaplan-Meier curvesMultivariate Cox regressionPredicting overall survivalCox regression modelsSurvival benefitStratify patientsMRI pre-Outcomes of repeat conventional transarterial chemoembolization in patients with liver metastases
Ghabili K, Windham-Herman A, Konstantinidis M, Murali N, Borde T, Adam L, Laage-Gaupp F, Lin M, Chapiro J, Georgiades C, Nezami N. Outcomes of repeat conventional transarterial chemoembolization in patients with liver metastases. Annals Of Hepatology 2024, 29: 101529. PMID: 39033928, PMCID: PMC11558520, DOI: 10.1016/j.aohep.2024.101529.Peer-Reviewed Original ResearchConventional transarterial chemoembolizationLiver metastasesNeuroendocrine tumorsColorectal carcinomaTransarterial chemoembolizationOverall survivalLung cancerAssociated with improved patient survivalManagement of liver metastasesMetastatic liver lesionsSingle-institution analysisNonresponding patientsSurvival outcomesPatient survivalResponse assessmentTarget lesionsMetastasisLiver lesionsPatientsResponse rateChemoembolizationSurvivalLiverLesionsCancerArtificial Intelligence-based Morpho-volumetric Analysis of Pre- and Post-EVAR Infrarenal Abdominal Aortic Aneurysms Characterized on Computed Tomography Angiography
Weiss D, Hager T, Aboian M, Lin M, Renninghoff D, Holler W, Fischer U, Deuschl C, Aneja S, Aboian E. Artificial Intelligence-based Morpho-volumetric Analysis of Pre- and Post-EVAR Infrarenal Abdominal Aortic Aneurysms Characterized on Computed Tomography Angiography. Journal Of Vascular Surgery 2024, 79: e133-e134. DOI: 10.1016/j.jvs.2024.03.165.Peer-Reviewed Original ResearchAutomated MR Spectroscopy single-voxel placement in suspected diffuse glioma based on tumor biology
Chadha S, Jacobs S, Zeevi T, Tillmanns N, Merkaj S, Lost J, Lin M, Bousabarah K, Holler W, Memon F, Aneja S, Aboian M. Automated MR Spectroscopy single-voxel placement in suspected diffuse glioma based on tumor biology. Proceedings Of The International Society For Magnetic Resonance In Medicine ... Scientific Meeting And Exhibition. 2024 DOI: 10.58530/2024/5120.Peer-Reviewed Original ResearchTumor biologyDiffuse gliomasSingle-voxel magnetic resonance spectroscopyManagement of diffuse gliomasMagnetic resonance spectroscopyNon-invasive diagnosisVoxel placementMetabolite quantificationSingle-voxelMR imagingRadiology techniciansTumorGliomaPlacementResonance spectroscopyPoor-quality spectraClinicDiagnosisComparison of Volumetric and 2D Measurements and Longitudinal Trajectories in the Response Assessment of BRAF V600E-Mutant Pediatric Gliomas in the Pacific Pediatric Neuro-Oncology Consortium Clinical Trial
Ramakrishnan D, Brüningk S, von Reppert M, Memon F, Maleki N, Aneja S, Kazerooni A, Nabavizadeh A, Lin M, Bousabarah K, Molinaro A, Nicolaides T, Prados M, Mueller S, Aboian M. Comparison of Volumetric and 2D Measurements and Longitudinal Trajectories in the Response Assessment of BRAF V600E-Mutant Pediatric Gliomas in the Pacific Pediatric Neuro-Oncology Consortium Clinical Trial. American Journal Of Neuroradiology 2024, 45: 475-482. PMID: 38453411, PMCID: PMC11288571, DOI: 10.3174/ajnr.a8189.Peer-Reviewed Original ResearchArea under the curvePediatric gliomasBT-RADSResponse assessmentPartial responseClinical trialsVolumetric analysisReceiver operating characteristic analysisBrain Tumor ReportingReceiver operating characteristic curveModel estimation timeOperating characteristic analysisEvaluate treatment efficacyStable diseasePartial respondersManual volumetric segmentationNo significant differenceSolid tumorsProspective studyTumor ReportingClinical decision-makingTreatment efficacyGliomaSignificant differenceCharacteristic curveVolumetric Abdominal Aortic Aneurysm Analysis in Post Evar Surveillance Settings
Weiss D, Aboian M, Lin M, Holler W, Renninghoff D, Harris S, Fischer U, Chaar C, Deuschl C, Aboian E. Volumetric Abdominal Aortic Aneurysm Analysis in Post Evar Surveillance Settings. Annals Of Vascular Surgery 2024, 100: 265. DOI: 10.1016/j.avsg.2023.12.040.Peer-Reviewed Original ResearchA large open access dataset of brain metastasis 3D segmentations on MRI with clinical and imaging information
Ramakrishnan D, Jekel L, Chadha S, Janas A, Moy H, Maleki N, Sala M, Kaur M, Petersen G, Merkaj S, von Reppert M, Baid U, Bakas S, Kirsch C, Davis M, Bousabarah K, Holler W, Lin M, Westerhoff M, Aneja S, Memon F, Aboian M. A large open access dataset of brain metastasis 3D segmentations on MRI with clinical and imaging information. Scientific Data 2024, 11: 254. PMID: 38424079, PMCID: PMC10904366, DOI: 10.1038/s41597-024-03021-9.Peer-Reviewed Original ResearchConceptsWhole-brain radiotherapyStereotactic radiosurgeryT1 post-contrastBrain metastasesPost-contrastSide effectsImage informationArtificial intelligenceAssociated with cognitive side effectsContrast-enhancing lesionsQuality of datasetsCognitive side effectsFLAIR MR imagesValidation of AI modelsBrain radiotherapyLimitations of algorithmsStandard treatmentAI modelsMR imagingAI networksContrast enhancementClinical settingSegmentation workflowDatasetClinical adoptionEnhancing clinical decision-making: An externally validated machine learning model for predicting isocitrate dehydrogenase mutation in gliomas using radiomics from presurgical magnetic resonance imaging
Lost J, Ashraf N, Jekel L, von Reppert M, Tillmanns N, Willms K, Merkaj S, Petersen G, Avesta A, Ramakrishnan D, Omuro A, Nabavizadeh A, Bakas S, Bousabarah K, Lin M, Aneja S, Sabel M, Aboian M. Enhancing clinical decision-making: An externally validated machine learning model for predicting isocitrate dehydrogenase mutation in gliomas using radiomics from presurgical magnetic resonance imaging. Neuro-Oncology Advances 2024, 6: vdae157. PMID: 39659829, PMCID: PMC11630777, DOI: 10.1093/noajnl/vdae157.Peer-Reviewed Original ResearchIsocitrate dehydrogenase mutation statusArea under the curveMagnetic resonance imagingMutation statusML modelsMachine learningSemi-automated tumour segmentationsPre-surgical magnetic resonance imagingCare of glioma patientsMachine learning modelsClinical care of glioma patientsIsocitrate dehydrogenase statusAnnotated datasetsFeature extractionPrediction taskMulti-institutional dataModel trainingIDH mutationsPredicting IDH mutationLearning modelsRetrospective studyHeterogeneous datasetsTumor segmentationGlioma patientsBrain tumors
2023
Comparison of volumetric and 2D-based response methods in the PNOC-001 pediatric low-grade glioma clinical trial
von Reppert M, Ramakrishnan D, Brüningk S, Memon F, Fadel S, Maleki N, Bahar R, Avesta A, Jekel L, Sala M, Lost J, Tillmanns N, Kaur M, Aneja S, Kazerooni A, Nabavizadeh A, Lin M, Hoffmann K, Bousabarah K, Swanson K, Haas-Kogan D, Mueller S, Aboian M. Comparison of volumetric and 2D-based response methods in the PNOC-001 pediatric low-grade glioma clinical trial. Neuro-Oncology Advances 2023, 6: vdad172. PMID: 38221978, PMCID: PMC10785766, DOI: 10.1093/noajnl/vdad172.Peer-Reviewed Original ResearchApplication of novel PACS-based informatics platform to identify imaging based predictors of CDKN2A allelic status in glioblastomas
Tillmanns N, Lost J, Tabor J, Vasandani S, Vetsa S, Marianayagam N, Yalcin K, Erson-Omay E, von Reppert M, Jekel L, Merkaj S, Ramakrishnan D, Avesta A, de Oliveira Santo I, Jin L, Huttner A, Bousabarah K, Ikuta I, Lin M, Aneja S, Turowski B, Aboian M, Moliterno J. Application of novel PACS-based informatics platform to identify imaging based predictors of CDKN2A allelic status in glioblastomas. Scientific Reports 2023, 13: 22942. PMID: 38135704, PMCID: PMC10746716, DOI: 10.1038/s41598-023-48918-4.Peer-Reviewed Original ResearchConceptsInformatics platformDeep learning algorithmsImaging featuresCDKN2A alterationsLearning algorithmHeterozygous lossHomozygous deletionLarge datasetsDeep white matter invasionGBM molecular subtypesNew informaticsQualitative imaging biomarkersWhole-exome sequencingQualitative imaging featuresGBM resectionRadiographic evidenceWorse prognosisPACSMolecular subtypesPial invasionImaging biomarkersCDKN2A mutationsAllele statusNoninvasive identificationMagnetic resonance imagesIntraprocedural C‐arm dual‐phase cone‐beam enhancement patterns correlate with tumor absorbed dose after radioembolization
Bastiaannet R, Lin M, Frey E, de Jong H. Intraprocedural C‐arm dual‐phase cone‐beam enhancement patterns correlate with tumor absorbed dose after radioembolization. Medical Physics 2023, 51: 3045-3052. PMID: 38064591, PMCID: PMC10994751, DOI: 10.1002/mp.16882.Peer-Reviewed Original ResearchContrast-enhanced cone-beam CTHepatocellular carcinomaPET/CT scansNon-tumor liver tissuesPersonalized treatment planningIntra-procedural imagingBlood flow patternsPretreatment tumorRetrospective studyLimits of agreementTumor responseBland-Altman analysisClinical trialsTumor doseCT scanEnhancement patternHepatic vasculatureHCC tumorsCatheter positionTumor tissueLiver tissueTumorsHepatic radioembolizationPatientsDoseSystematic Literature Review of Machine Learning Algorithms Using Pretherapy Radiologic Imaging for Glioma Molecular Subtype Prediction
Lost J, Verma T, Jekel L, von Reppert M, Tillmanns N, Merkaj S, Petersen G, Bahar R, Gordem A, Haider M, Subramanian H, Brim W, Ikuta I, Omuro A, Conte G, Marquez-Nostra B, Avesta A, Bousabarah K, Nabavizadeh A, Kazerooni A, Aneja S, Bakas S, Lin M, Sabel M, Aboian M. Systematic Literature Review of Machine Learning Algorithms Using Pretherapy Radiologic Imaging for Glioma Molecular Subtype Prediction. American Journal Of Neuroradiology 2023, 44: 1126-1134. PMID: 37770204, PMCID: PMC10549943, DOI: 10.3174/ajnr.a8000.Peer-Reviewed Original ResearchP13.05.B INCORPORATION OF AI-BASED AUTOSEGMENTATION AND CLASSIFICATION INTO NEURORADIOLOGY WORKFLOW: PACS-BASED AI TO BUILD YALE GLIOMA DATASET
Tillmanns N, Lost J, Merkaj S, von Reppert M, Chadha S, Lin M, Bousabarah K, Huttner A, Aneja S, Avesta A, Omuro A, Aboian M. P13.05.B INCORPORATION OF AI-BASED AUTOSEGMENTATION AND CLASSIFICATION INTO NEURORADIOLOGY WORKFLOW: PACS-BASED AI TO BUILD YALE GLIOMA DATASET. Neuro-Oncology 2023, 25: ii101-ii101. PMCID: PMC10489908, DOI: 10.1093/neuonc/noad137.339.Peer-Reviewed Original ResearchP13.02.A APPLICATION OF NOVEL PACS-BASED INFORMATICS PLATFORM TO IDENTIFY IMAGING BASED PREDICTORS OF CDKN2A ALLELIC STATUS IN GLIOBLASTOMAS
Tillmanns N, Lost J, Tabor J, Vasandani S, Vetsa S, Marianayagam N, Yalcin K, Erson-Omay Z, von Reppert M, Jekel L, Merkaj S, Ramakrishnan D, Avesta A, de Oliveira Santo I, Jin L, Huttner A, Bousabarah K, Ikuta I, Lin M, Aneja S, Turowski B, Aboian M, Moliterno J. P13.02.A APPLICATION OF NOVEL PACS-BASED INFORMATICS PLATFORM TO IDENTIFY IMAGING BASED PREDICTORS OF CDKN2A ALLELIC STATUS IN GLIOBLASTOMAS. Neuro-Oncology 2023, 25: ii100-ii101. PMCID: PMC10489329, DOI: 10.1093/neuonc/noad137.336.Peer-Reviewed Original ResearchImaging featuresPial invasionQualitative imaging biomarkersQualitative imaging featuresWorse prognosisImaging biomarkersCDKN2A mutationsMethods Sixty-nine patientsCDKN2A alterationsHomozygous deletionHeterozygous lossSixty-nine patientsDeep white matterDeep white matter invasionGBM molecular subtypesWhole-exome sequencingNine patientsGBM resectionRadiographic evidenceMolecular subtypesBACKGROUND GliomasWhite matterAllele statusNoninvasive identificationGliomasPACS-integrated machine learning breast density classifier: clinical validation
Lewin J, Schoenherr S, Seebass M, Lin M, Philpotts L, Etesami M, Butler R, Durand M, Heller S, Heacock L, Moy L, Tocino I, Westerhoff M. PACS-integrated machine learning breast density classifier: clinical validation. Clinical Imaging 2023, 101: 200-205. PMID: 37421715, DOI: 10.1016/j.clinimag.2023.06.023.Peer-Reviewed Original ResearchDeveloping an Open Access Brain Metastasis Database: Yale Brain Metastasis Database
Ramakrishnan D, Jekel L, Sala M, Kaur M, Janas A, Petersen G, Bousabarah K, Lin M, Merkaj S, von Reppert M, Aboian M. Developing an Open Access Brain Metastasis Database: Yale Brain Metastasis Database. Proceedings Of The International Society For Magnetic Resonance In Medicine ... Scientific Meeting And Exhibition. 2023 DOI: 10.58530/2023/0403.Peer-Reviewed Original ResearchComparing 3D, 2.5D, and 2D Approaches to Brain MRI Segmentation
Avesta A, Hossain S, Lin M, Aboian M, Krumholz H, Aneja S. Comparing 3D, 2.5D, and 2D Approaches to Brain MRI Segmentation. Proceedings Of The International Society For Magnetic Resonance In Medicine ... Scientific Meeting And Exhibition. 2023 DOI: 10.58530/2023/0804.Peer-Reviewed Original ResearchPredicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning
Kucukkaya A, Zeevi T, Chai N, Raju R, Haider S, Elbanan M, Petukhova-Greenstein A, Lin M, Onofrey J, Nowak M, Cooper K, Thomas E, Santana J, Gebauer B, Mulligan D, Staib L, Batra R, Chapiro J. Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning. Scientific Reports 2023, 13: 7579. PMID: 37165035, PMCID: PMC10172370, DOI: 10.1038/s41598-023-34439-7.Peer-Reviewed Original Research